Radiation hydrodynamics in a moving plasma with Compton scattering: Frequency-dependent solutions

Author:

Fukue Jun1ORCID

Affiliation:

1. 5-61 Yoshida-Honmachi , Sakyo-ku, Kyoto, Kyoto 606-8317, Japan

Abstract

Abstract Radiation hydrodynamical equations with Compton scattering are generally difficult to solve analytically, and usually examined numerically, even if in the subrelativistic regime. We examine the equations available in the subrelativistic regime of kBT$/$(mec2) ≲ 0.1, hν$/$(mec2) ≲ 0.1, and v$/$c ≲ 0.1, where T is the electron temperature, ν the photon frequency, and v the fluid bulk velocity. For simplicity, we ignore the induced scattering terms. We then seek and obtain analytical solutions of frequency-dependent radiative moment equations of a hot plasma with bulk motions for several situations in the subrelativistic regime. For example, in the static case of a plane-parallel atmosphere without bulk motions, where equations involve the generalized Kompaneets equation with subrelativistic corrections, we find the Wien-type solution, which reduces to the usual Milne–Eddington solution in the nonrelativistic limit, as well as the power-law-type one, which has a form of [hν$/$(kBT)]−4. In the moving case of an accelerating one-dimensional flow with bulk motions, we also find the Wien-type and the power-law-type solutions affected by the bulk Compton effect. Particularly, in the Wien-type solutions, due to the bulk Compton effect, the radiation fields gain momentum from the hot plasma in the low-frequency regime of hν < 3kBT, while they lose it in the high-frequency regime of hν > 3kBT.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3