EPCO-31. EPIGENOMIC INTRATUMORAL HETEROGENEITY OF GLIOBLASTOMA IN THREE-DIMENSIONAL SPACE

Author:

Mathur Radhika1,Iyyanki Sriranga2,Hilz Stephanie3,Hong Chibo1,Phillips Joanna1,Chang Susan1,Yue Feng2,Costello Joseph3

Affiliation:

1. University of California San Francisco, San Francisco, CA, USA

2. Northwestern University, Evanston, IL, USA

3. Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA

Abstract

Abstract Treatment failure in glioblastoma is often attributed to intratumoral heterogeneity (ITH), which fosters tumor evolution and generation of therapy-resistant clones. While ITH in glioblastoma has been well-characterized at the genomic and transcriptomic levels, the extent of ITH at the epigenomic level and its biological and clinical significance are not well understood. In collaboration with neurosurgeons, neuropathologists, and biomedical imaging experts, we have established a novel topographical approach towards characterizing epigenomic ITH in three-dimensional (3-D) space. We utilize pre-operative MRI scans to define tumor volume and then utilize 3-D surgical neuro-navigation to intra-operatively acquire 10+ samples representing maximal anatomical diversity. The precise spatial location of each sample is mapped by 3-D coordinates, enabling tumors to be visualized in 360-degrees and providing unprecedented insight into their spatial organization and patterning. For each sample, we conduct assay for transposase-accessible chromatin using sequencing (ATAC-Seq), which provides information on the genomic locations of open chromatin, DNA-binding proteins, and individual nucleosomes at nucleotide resolution. We additionally conduct whole-exome sequencing and RNA sequencing for each spatially mapped sample. Integrative analysis of these datasets reveals distinct patterns of chromatin accessibility within glioblastoma tumors, as well as their associations with genetically defined clonal expansions. Our analysis further reveals how differences in chromatin accessibility within tumors reflect underlying transcription factor activity at gene regulatory elements, including both promoters and enhancers, and drive expression of particular gene expression sets, including neuronal and immune programs. Collectively, this work provides the most comprehensive characterization of epigenomic ITH to date, establishing its importance for driving tumor evolution and therapy resistance in glioblastoma. As a resource for further investigation, we have provided our datasets on an interactive data sharing platform – The 3D Glioma Atlas – that enables 360-degree visualization of both genomic and epigenomic ITH.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3