Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor Verteporfin in preclinical glioblastoma models

Author:

Barrette Anne Marie12ORCID,Ronk Halle1,Joshi Tanvi1,Mussa Zarmeen1,Mehrotra Meenakshi1,Bouras Alexandros3,Nudelman German4,Jesu Raj Joe Gerald3,Bozec Dominique3,Lam William1,Houldsworth Jane1,Yong Raymund3,Zaslavsky Elena4,Hadjipanayis Constantinos G3,Birtwistle Marc R5,Tsankova Nadejda M16

Affiliation:

1. Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

2. Department of Neurosurgery, Stanford University, Stanford, California, USA

3. Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA

4. Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

5. Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA

6. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA

Abstract

Abstract Background Glioblastoma (GBM) remains a largely incurable disease as current therapy fails to target the invasive nature of glioma growth in disease progression and recurrence. Here, we use the FDA-approved drug and small molecule Hippo inhibitor Verteporfin (VP) to target YAP-TEAD activity, known to mediate convergent aspects of tumor invasion/metastasis, and assess the drug’s efficacy and survival benefit in GBM models. Methods Up to 8 low-passage patient-derived GBM cell lines with distinct genomic drivers, including 3 primary/recurrent pairs, were treated with VP or vehicle (VEH) to assess in vitro effects on proliferation, migration, invasion, YAP-TEAD activity, and transcriptomics. Patient-derived orthotopic xenograft (PDX) models were used to assess VP’s brain penetrance and effects on tumor burden and survival. Results VP treatment disturbed YAP/TAZ-TEAD activity; disrupted transcriptome signatures related to invasion, epithelial-to-mesenchymal, and proneural-to-mesenchymal transition, phenocopying TEAD1-knockout effects; and impaired tumor migration/invasion dynamics across primary and recurrent GBM lines. In an aggressive orthotopic PDX GBM model, short-term VP treatment consistently diminished core and infiltrative tumor burden, which was associated with decreased tumor expression of Ki67, nuclear YAP, TEAD1, and TEAD-associated targets EGFR, CDH2, and ITGB1. Finally, long-term VP treatment appeared nontoxic and conferred survival benefit compared to VEH in 2 PDX models: as monotherapy in primary (de novo) GBM and in combination with Temozolomide chemoradiation in recurrent GBM, where VP treatment associated with increased MGMT methylation. Conclusions We demonstrate combined anti-invasive and anti-proliferative efficacy for VP with survival benefit in preclinical GBM models, indicating potential therapeutic value of this already FDA-approved drug if repurposed for GBM patients.

Funder

National Institutes of Health

Tisch Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3