Transgenerational responses of molluscs and echinoderms to changing ocean conditions

Author:

Ross Pauline M.12,Parker Laura3,Byrne Maria3

Affiliation:

1. School of Science and Health, Western Sydney University, Hawkesbury Campus K12, Locked Bag 2751, Penrith South DC, NSW2751, Australia

2. School of Life and Environmental Sciences, University of Sydney, Carslaw Building, Level 5, Camperdown 2006, Australia

3. Schools of Medical and Biological Sciences, F13, University of Sydney, Sydney, NSW2006, Australia

Abstract

Abstract We are beginning to understand how the larvae of molluscs and echinoderms with complex life cycles will be affected by climate change. Early experiments using short-term exposures suggested that larvae in oceans predicted to increase in acidification and temperature will be smaller in size, take longer to develop, and have a greater incidence of abnormal development. More realistic experiments which factored in the complex life cycles of molluscs and echinoderms found impacts not as severe as predicted. This is because the performance of one life history stage led to a significant carryover effect on the subsequent life history stage. Carryover effects that arise within a generation, for example, embryonic and larval stages, can influence juvenile and adult success. Carryover effects can also arise across a generation, known as transgenerational plasticity (TGP). A transgenerational response or TGP can be defined as a phenotypic change in offspring in response to the environmental stress experienced by a parent before fertilization. In the small number of experiments which have measured the transgenerational response of molluscs and echinoderms to elevated CO2, TGP has been observed in the larval offspring. If we are to safeguard ecological and economically significant mollusc and echinoderm species against climate change then we require more knowledge of the impacts that carryover effects have within and across generations as well as an understanding of the underlying mechanisms responsible for such adaptation.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3