Sociodemographic Variables Can Guide Prioritized Testing Strategies for Epidemic Control in Resource-Limited Contexts

Author:

Evans Michelle V1ORCID,Ramiadantsoa Tanjona1,Kauffman Kayla234,Moody James5,Nunn Charles L23,Rabezara Jean Yves6,Raharimalala Prisca7,Randriamoria Toky M89,Soarimalala Voahangy810,Titcomb Georgia41112,Garchitorena Andres113,Roche Benjamin1

Affiliation:

1. Maladies Infectieuses et Vecteurs : Écologie, Génétique, Évolution et Contrôle, Université Montpellier , CNRS, IRD, Montpellier , France

2. Department of Evolutionary Anthropology, Duke University , Durham, North Carolina , USA

3. Duke Global Health Institute , Durham, North Carolina , USA

4. Ecology, Evolution, and Marine Biology, University of California , Santa Barbara, California , USA

5. Department of Sociology, Duke University , Durham, North Carolina , USA

6. Department of Science and Technology, University of Antsiranana , Antsiranana , Madagascar

7. Andapa, Madagascar

8. Association Vahatra , Antananarivo , Madagascar

9. Zoologie et Biodiversité Animale, Domaine Sciences et Technologies, Université d’Antananarivo , Antananarivo , Madagascar

10. Institut des Sciences et Techniques de l’Environnement, Université de Fianarantsoa , Fianarantsoa , Madagascar

11. Marine Science Institute, University of California , Santa Barbara, California , USA

12. Department of Fish, Wildlife, and Conservation Biology, Colorado State University , Fort Collins, Colorado , USA

13. Pivot, Ifanadiana , Madagascar

Abstract

Abstract Background Targeted surveillance allows public health authorities to implement testing and isolation strategies when diagnostic resources are limited, and can be implemented via the consideration of social network topologies. However, it remains unclear how to implement such surveillance and control when network data are unavailable. Methods We evaluated the ability of sociodemographic proxies of degree centrality to guide prioritized testing of infected individuals compared to known degree centrality. Proxies were estimated via readily available sociodemographic variables (age, gender, marital status, educational attainment, household size). We simulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics via a susceptible-exposed-infected-recovered individual-based model on 2 contact networks from rural Madagascar to test applicability of these findings to low-resource contexts. Results Targeted testing using sociodemographic proxies performed similarly to targeted testing using known degree centralities. At low testing capacity, using proxies reduced infection burden by 22%–33% while using 20% fewer tests, compared to random testing. By comparison, using known degree centrality reduced the infection burden by 31%–44% while using 26%–29% fewer tests. Conclusions We demonstrate that incorporating social network information into epidemic control strategies is an effective countermeasure to low testing capacity and can be implemented via sociodemographic proxies when social network data are unavailable.

Funder

Agence Nationale de la Recherce

NIH-SSF-NIFA

Duke University

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3