From the Pipeline to the Bedside: Advances and Challenges in Clinical Metagenomics

Author:

Dulanto Chiang Augusto1,Dekker John P1

Affiliation:

1. Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland

Abstract

Abstract Next-generation sequencing (NGS) technologies have revolutionized multiple areas in the field of infectious diseases, from pathogen discovery to characterization of genes mediating drug resistance. Consequently, there is much anticipation that NGS technologies may be harnessed in the realm of diagnostic methods to complement or replace current culture-based and molecular microbiologic techniques. In this context, much consideration has been given to hypothesis-free, culture-independent tests that can be performed directly on primary clinical samples. The closest realizations of such universal diagnostic methods achieved to date are based on targeted amplicon and unbiased metagenomic shotgun NGS approaches. Depending on the exact details of implementation and analysis, these approaches have the potential to detect viruses, bacteria, fungi, parasites, and archaea, including organisms that were previously undiscovered and those that are uncultivatable. Shotgun metagenomics approaches additionally can provide information on the presence of virulence and resistance genetic elements. While many limitations to the use of NGS in clinical microbiology laboratories are being overcome with decreasing technology costs, expanding curated pathogen sequence databases, and better data analysis tools, there remain many challenges to the routine use and implementation of these methods. This review summarizes recent advances in applications of targeted amplicon and shotgun-based metagenomics approaches to infectious disease diagnostic methods. Technical and conceptual challenges are considered, along with expectations for future applications of these techniques.

Funder

National Institute of Allergy and Infectious Diseases

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Immunology and Allergy

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Report Says What?;Clinics in Laboratory Medicine;2024-03

2. Diagnostic Stewardship for Next-Generation Sequencing Assays in Clinical Microbiology;Clinics in Laboratory Medicine;2024-03

3. Respiratory Metagenomics: Ready for Prime Time?;American Journal of Respiratory and Critical Care Medicine;2024-01-15

4. Long-read sequencing for metagenomics in microbiology;Diagnostic Molecular Pathology;2024

5. Genomic analysis of microbial infections;Molecular Medical Microbiology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3