Targeting Nrf2-antioxidant signalling reverses acquired cabazitaxel resistance in prostate cancer cells

Author:

Endo Satoshi1ORCID,Kawai Mina1,Hoshi Manami1,Segawa Jin1,Fujita Mei1,Matsukawa Takuo2,Fujimoto Naohiro2,Matsunaga Toshiyuki3,Ikari Akira1

Affiliation:

1. Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

2. EndoDepartment of Urology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan

3. Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan

Abstract

Abstract Prostate cancer is known to have a relatively good prognosis, but long-term hormone therapy can lead to castration-resistant prostate cancer (CRPC). Cabazitaxel, a second-generation taxane, has been used for the CRPC treatment, but its tolerance is an urgent problem to be solved. In this study, to elucidate the acquisition mechanism of the cabazitaxel-resistance, we established cabazitaxel-resistant prostate cancer 22Rv1 (Cab-R) cells, which exhibited ∼sevenfold higher LD50 against cabazitaxel than the parental 22Rv1 cells. Cab-R cells showed marked increases in nuclear accumulation of NF-E2 related factor 2 (Nrf2) and expression of Nrf2-inducible antioxidant enzymes compared to 22Rv1 cells, suggesting that Nrf2 signalling is homeostatically activated in Cab-R cells. The cabazitaxel sensitivity of Cab-R cells was enhanced by silencing of Nrf2, and that of 22Rv1 cells was reduced by activation of Nrf2. Halofuginone (HF) has been recently identified as a potent Nrf2 synthetic inhibitor, and its treatment of Cab-R cells not only suppressed the Nrf2 signalling by decreasing both nuclear and cytosolic Nrf2 protein levels, but also significantly augmented the cabazitaxel sensitivity. Thus, inhibition of Nrf2 signalling may be effective in overcoming the cabazitaxel resistance in prostate cancer cells.

Funder

JSPS KAKENHI

API Co. Ltd

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3