Systemic signalling through translationally controlled tumour protein controls lateral root formation in Arabidopsis

Author:

Branco Rémi1,Masle Josette1ORCID

Affiliation:

1. The Australian National University, College of Science, Research School of Biology, Canberra ACT, Australia

Abstract

Abstract The plant body plan and primary organs are established during embryogenesis. However, in contrast to animals, plants have the ability to generate new organs throughout their whole life. These give them an extraordinary developmental plasticity to modulate their size and architecture according to environmental constraints and opportunities. How this plasticity is regulated at the whole-organism level is elusive. Here we provide evidence for a role for translationally controlled tumour protein (TCTP) in regulating the iterative formation of lateral roots in Arabidopsis. AtTCTP1 modulates root system architecture through a dual function: as a general constitutive growth promoter enhancing root elongation and as a systemic signalling agent via mobility in the vasculature. AtTCTP1 encodes mRNAs with long-distance mobility between the shoot and roots. Mobile shoot-derived TCTP1 gene products act specifically to enhance the frequency of lateral root initiation and emergence sites along the primary root pericycle, while root elongation is controlled by local constitutive TCTP1 expression and scion size. These findings uncover a novel type for an integrative signal in the control of lateral root initiation and the compromise for roots between branching more profusely or elongating further. They also provide the first evidence in plants of an extracellular function of the vital, highly expressed ubiquitous TCTP1.

Funder

Australian National University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3