Meta-analysis of the effect of CYP2B6, CYP2A6, UGT2B7 and CAR polymorphisms on efavirenz plasma concentrations

Author:

Ayuso Pedro1,Neary Megan1ORCID,Chiong Justin1,Owen Andrew1

Affiliation:

1. Infection Pharmacology Group, University of Liverpool, Liverpool, UK

Abstract

Abstract Background Efavirenz primary metabolism is catalysed by CYP2B6 with minor involvement of CYP2A6. Subsequently, phase I metabolites are conjugated by UGT2B7, and constitutive androstane receptor (CAR) has been shown to transcriptionally regulate many relevant enzymes and transporters. Several polymorphisms occurring in the genes coding for these proteins have been shown to impact efavirenz pharmacokinetics in some but not all studies. Objectives A meta-analysis was performed to assess the overall effect of CYP2B6 rs3745274, CYP2A6 (rs28399454, rs8192726 and rs28399433), UGT2B7 (rs28365062 and rs7439366) and NR1I3 (rs2307424 and rs3003596) polymorphisms on mid-dose efavirenz plasma concentrations. Methods Following a literature review, pharmacokinetic parameters were compiled and a meta-analysis for these variants was performed using Review Manager and OpenMetaAnalyst. A total of 28 studies were included. Results Unsurprisingly, the analysis confirmed that individuals homozygous for the T allele for CYP2B6 rs3745274 had significantly higher efavirenz concentrations than those homozygous for the G allele [weighted standard mean difference (WSMD) = 2.98; 95% CI 2.19–3.76; P < 0.00001]. A subgroup analysis confirmed ethnic differences in frequency but with a similar effect size in each ethnic group (P = 0.96). Associations with CYP2A6 and UGT2B7 variants were not statistically significant, but T homozygosity for CAR rs2307424 was associated with significantly lower efavirenz concentrations than in C homozygotes (WSMD = −0.32; 95% CI −0.59 to −0.06; P = 0.02). Conclusions This meta-analysis provides the overall effect size for the impact of CYP2B6 rs3745274 and NR1I3 rs2307424 on efavirenz pharmacokinetics. The analysis also indicates that some previous associations were not significant when interrogated across studies.

Funder

University of Liverpool

ViiV Healthcare

Merck

Janssen

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3