The Fox Gene Repertoire in the Annelid Owenia fusiformis Reveals Multiple Expansions of the foxQ2 Class in Spiralia

Author:

Seudre Océane1,Martín-Zamora Francisco M1ORCID,Rapisarda Valentina1,Luqman Imran1,Carrillo-Baltodano Allan M1,Martín-Durán José M1

Affiliation:

1. School of Biological and Behavioural Sciences, Queen Mary University of London , Mile End Road, E1 4NS United Kingdom

Abstract

Abstract Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia—a large clade of invertebrate animals including molluscs and annelids—are scarce but much needed to better understand the evolutionary history of this gene family. Here, we reconstruct and functionally characterize the Fox gene complement in the annelid Owenia fusiformis, a slow evolving species and member of the sister group to all remaining annelids. The genome of O. fusiformis contains at least a single ortholog for 20 of the 22 Fox gene classes that are ancestral to Bilateria, including an ortholog of the recently discovered foxT class. Temporal and spatial expression dynamics reveal a conserved role of Fox genes in gut formation, mesoderm patterning, and apical organ and cilia formation in Annelida and Spiralia. Moreover, we uncover an ancestral expansion of foxQ2 genes in Spiralia, represented by 11 paralogs in O. fusiformis. Notably, although all foxQ2 copies have apical expression in O. fusiformis, they show variable spatial domains and staggered temporal activation, which suggest cooperation and sub-functionalization among foxQ2 genes for the development of apical fates in this annelid. Altogether, our study informs the evolution and developmental roles of Fox genes in Annelida and Spiralia generally, providing the basis to explore how regulatory changes in Fox gene expression might have contributed to developmental and morphological diversification in Spiralia.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3