Role of the tomato fruit ripening regulator MADS-RIN in resistance to Botrytis cinerea infection

Author:

Zheng Hui,Jin Rong,Liu Zimeng,Sun Cui,Shi Yanna,Grierson Donald12ORCID,Zhu Changqing,Li ShanORCID,Ferguson Ian3,Chen Kunsong

Affiliation:

1. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou,China

2. Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough,UK

3. Zhejiang University (Visiting Scientist), Hangzhou, China

Abstract

Abstract Tomato MADS-RIN (RIN) transcription factor has been shown to be a master activator regulating fruit ripening. Recent studies have revealed that in addition to activating many other cell wall genes, it also represses expression of XTH5, XTH8, and MAN4a, which are positively related to excess flesh softening and cell wall degradation, which might indicate it has a potential role in pathogen resistance of ripening fruit. In this study, both wild-type (WT) and RIN-knockout (RIN-KO) mutant tomato fruit were infected with Botrytis cinerea to investigate the function of RIN in defense against pathogen infection during ripening. The results showed that RIN-KO fruit were much more sensitive to B. cinerea infection with larger lesion sizes. Transcriptome data and qRT-PCR assay indicate genes of phenylalanine ammonialyase (PAL) and chitinase (CHI) in RIN-KO fruit were reduced and their corresponding enzyme activities were decreased. Transcripts of genes encoding pathogenesis-related proteins (PRs), including PR1a, PRSTH2, and APETALA2/Ethylene Response Factor (AP2/ERF) including ERF.A1, Pti5, Pti6, ERF.A4, were reduced in RIN-KO fruit compared to WT fruit. Moreover, in the absence of RIN the expression of genes encoding cell wall-modifying enzymes XTH5, XTH8, MAN4a has been reported to be elevated, which is potentially correlated with cell wall properties. When present, RIN represses transcription of XTH5 by activating ERF.F4, a class II (repressor class) ERF gene family member, and ERF.F5. These results support the conclusion that RIN enhances ripening-related resistance to gray mold infection by upregulating pathogen-resistance genes and defense enzyme activities as well as reducing accumulation of transcripts encoding some cell wall enzymes.

Funder

National Natural Science Foundation of China

Zhejiang Natural Science Fund

Youth Research and Innovation Project of Zhejiang University

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3