Divergence-conforming methods for transient double-diffusive flows: a priori and a posteriori error analysis

Author:

Bürger Raimund1,Khan Arbaz2,Méndez Paul E3,Ruiz-Baier Ricardo4

Affiliation:

1. CI2MA and Departamento de Ingeniería Matemática , Universidad de Concepción, Casilla 160-C, Concepción, Chile

2. Department of Mathematics , Indian Institute of Technology Roorkee, Roorkee 247667, India

3. Research Centre on Mathematical Modelling (MODEMAT) , Escuela Politécnica Nacional, Quito, Ecuador

4. School of Mathematics , Monash University, 9 Rainforest Walk, Melbourne, VIC 3800, Australia and World-Class Research Center ‘Digital biodesign and personalized healthcare’, Sechenov First Moscow State Medical University, Moscow, Russia and Universidad Adventista de Chile, Casilla 7-D, Chillán, Chile

Abstract

Abstract The analysis of an $\textbf {H}(\textrm {div})$-conforming method for a model of double-diffusive flow in porous media introduced in Bürger, Méndez & Ruiz-Baier (2019, On H(div)-conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal., 57,1318–1343) is extended to the time-dependent case. In addition, the efficiency and reliability of residual-based a posteriori error estimators for the steady, semidiscrete and fully discrete problems are established. The resulting methods are applied to simulate the sedimentation of small particles in salinity-driven flows. The method consists of Brezzi–Douglas–Marini approximations for velocity and compatible piecewise discontinuous pressures, whereas Lagrangian elements are used for concentration and salinity distribution. Numerical tests confirm the properties of the proposed family of schemes and of the adaptive strategy guided by the a posteriori error indicators.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference55 articles.

1. Simulation of incompressible flows with heat and mass transfer using parallel finite element method;Abedi;Electronic J. Diff. Eq.,2003

2. Numerical analysis of reaction front propagation model under Boussinesq approximation;Agouzal;Math. Meth. Appl. Sci.,2003

3. A posteriori error analysis for solving the Navier–Stokes problem and convection–diffusion equation;Agroum;Numer. Methods Part. Diff. Eqns.,2017

4. Spectral discretization of the time-dependent Navier–Stokes problem coupled with the heat equation;Agroum;Appl. Math. Comput.,2015

5. A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity;Aldbaissy;Calcolo,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3