Space–time discontinuous Galerkin approximation of acoustic waves with point singularities

Author:

Bansal Pratyuksh1,Moiola Andrea2,Perugia Ilaria3,Schwab Christoph1

Affiliation:

1. Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland

2. Department of Mathematics, University of Pavia, Via Ferrata 5, I-27100 Pavia, Italy

3. Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

Abstract

Abstract We develop a convergence theory of space–time discretizations for the linear, second-order wave equation in polygonal domains $\varOmega \subset{\mathbb R}^2$, possibly occupied by piecewise homogeneous media with different propagation speeds. Building on an unconditionally stable space–time DG formulation developed in Moiola & Perugia (2018, A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math., 138, 389–435), we (a) prove optimal convergence rates for the space–time scheme with local isotropic corner mesh refinement on the spatial domain, and (b) demonstrate numerically optimal convergence rates of a suitable sparse space–time version of the DG scheme. The latter scheme is based on the so-called combination formula, in conjunction with a family of anisotropic space–time DG discretizations. It results in optimal-order convergent schemes, also in domains with corners, with a number of degrees of freedom that scales essentially like the DG solution of one stationary elliptic problem in $\varOmega $ on the finest spatial grid. Numerical experiments for both smooth and singular solutions support convergence rate optimality on spatially refined meshes of the full and sparse space–time DG schemes.

Funder

European Union’s Horizon 2020 research and innovation programme

GNCS-INDAM

NA_FROM-PDEs

MIUR

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference45 articles.

1. The FEniCS project version 1.5;Alnæs;Arch. Numer. Softw.,2015

2. Direct and inverse error estimates for finite elements with mesh refinements;Babuška;Numer. Math.,1979

3. A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation;Banjai;SIAM J. Numer. Anal.,2017

4. Runge–Kutta convolution quadrature for operators arising in wave propagation;Banjai;Numer. Math.,2011

5. Space-time discontinuous Galerkin approximation of acoustic waves with point singularities;Bansal,2020

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3