Evaluation of recombination detection methods for viral sequencing

Author:

Jaya Frederick R12ORCID,Brito Barbara P13ORCID,Darling Aaron E14ORCID

Affiliation:

1. Australian Institute for Microbiology & Infection, University of Technology Sydney , 15 Broadway, Ultimo, New South Wales 2007, Australia

2. Ecology and Evolution, Research School of Biology, Australian National University , 134 Linnaeus Way, Acton, Australian Capital Territory 2600, Australia

3. New South Wales Department of Primary Industries , Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, New South Wales 2568, Australia

4. Illumina Australia Pty Ltd, Ultimo , New South Wales 2007, Australia

Abstract

Abstract Recombination is a key evolutionary driver in shaping novel viral populations and lineages. When unaccounted for, recombination can impact evolutionary estimations or complicate their interpretation. Therefore, identifying signals for recombination in sequencing data is a key prerequisite to further analyses. A repertoire of recombination detection methods (RDMs) have been developed over the past two decades; however, the prevalence of pandemic-scale viral sequencing data poses a computational challenge for existing methods. Here, we assessed eight RDMs: PhiPack (Profile), 3SEQ, GENECONV, recombination detection program (RDP) (OpenRDP), MaxChi (OpenRDP), Chimaera (OpenRDP), UCHIME (VSEARCH), and gmos; to determine if any are suitable for the analysis of bulk sequencing data. To test the performance and scalability of these methods, we analysed simulated viral sequencing data across a range of sequence diversities, recombination frequencies, and sample sizes. Furthermore, we provide a practical example for the analysis and validation of empirical data. We find that RDMs need to be scalable, use an analytical approach and resolution that is suitable for the intended research application, and are accurate for the properties of a given dataset (e.g. sequence diversity and estimated recombination frequency). Analysis of simulated and empirical data revealed that the assessed methods exhibited considerable trade-offs between these criteria. Overall, we provide general guidelines for the validation of recombination detection results, the benefits and shortcomings of each assessed method, and future considerations for recombination detection methods for the assessment of large-scale viral sequencing data.

Publisher

Oxford University Press (OUP)

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3