Structural brain network topological alterations in stuttering adults

Author:

Gracco Vincent L.12,Sares Anastasia G.3,Koirala Nabin1ORCID

Affiliation:

1. Haskins Laboratories, New Haven, CT, USA

2. School of Communication Sciences & Disorders, McGill University, Montreal, Canada

3. Department of Psychology, Concordia University, Montreal, Canada

Abstract

Abstract Persistent developmental stuttering is a speech disorder that primarily affects normal speech fluency but encompasses a complex set of symptoms ranging from reduced sensorimotor integration to socioemotional challenges. Here, we investigated the whole-brain structural connectome and its topological alterations in adults who stutter. Diffusion-weighted imaging data of 33 subjects (13 adults who stutter and 20 fluent speakers) were obtained along with a stuttering severity evaluation. The structural brain network properties were analysed using network-based statistics and graph theoretical measures particularly focussing on community structure, network hubs and controllability. Bayesian power estimation was used to assess the reliability of the structural connectivity differences by examining the effect size. The analysis revealed reliable and wide-spread decreases in connectivity for adults who stutter in regions associated with sensorimotor, cognitive, emotional and memory-related functions. The community detection algorithms revealed different subnetworks for fluent speakers and adults who stutter, indicating considerable network adaptation in adults who stutter. Average and modal controllability differed between groups in a subnetwork encompassing frontal brain regions and parts of the basal ganglia. The results revealed extensive structural network alterations and substantial adaptation in neural architecture in adults who stutter well beyond the sensorimotor network. These findings highlight the impact of the neurodevelopmental effects of persistent stuttering on neural organization and the importance of examining the full structural connectome and the network alterations that underscore the behavioural phenotype.

Funder

National Institute of Health

Canadian Institute of Health Research

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3