Mild traumatic brain injury history is associated with lower brain network resilience in soldiers

Author:

Powell Jacob R1ORCID,Hopfinger Joseph B2,Giovanello Kelly S2,Walton Samuel R3,DeLellis Stephen M4,Kane Shawn F15,Means Gary E6,Mihalik Jason P1

Affiliation:

1. Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

2. Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

3. Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University , Richmond, VA 23284 , USA

4. Fort Liberty Research Institute, The Geneva Foundation , Tacoma, WA 98402 , USA

5. Department of Family Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

6. United States Army Special Operations Command , Fort Liberty, NC 28303 , USA

Abstract

Abstract Special Operations Forces combat soldiers sustain frequent blast and blunt neurotrauma, most often classified as mild traumatic brain injuries. Exposure to repetitive mild traumatic brain injuries is associated with persistent behavioural, cognitive, emotional and neurological symptoms later in life. Identifying neurophysiological changes associated with mild traumatic brain injury exposure, in the absence of present-day symptoms, is necessary for detecting future neurological risk. Advancements in graph theory and functional MRI have offered novel ways to analyse complex whole-brain network connectivity. Our purpose was to determine how mild traumatic brain injury history, lifetime incidence and recency affected whole-brain graph theoretical outcome measures. Healthy male Special Operations Forces combat soldiers (age = 33.2 ± 4.3 years) underwent multimodal neuroimaging at a biomedical research imaging centre using 3T Siemens Prisma or Biograph MRI scanners in this cross-sectional study. Anatomical and functional scans were preprocessed. The blood-oxygen-level-dependent signal was extracted from each functional MRI time series using the Big Brain 300 atlas. Correlations between atlas regions were calculated and Fisher z-transformed to generate subject-level correlation matrices. The Brain Connectivity Toolbox was used to obtain functional network measures for global efficiency (the average inverse shortest path length), local efficiency (the average global efficiency of each node and its neighbours), and assortativity coefficient (the correlation coefficient between the degrees of all nodes on two opposite ends of a link). General linear models were fit to compare mild traumatic brain injury lifetime incidence and recency. Nonparametric ANOVAs were used for tests on non-normally distributed data. Soldiers with a history of mild traumatic brain injury had significantly lower assortativity than those who did not self-report mild traumatic brain injury (t148 = 2.44, P = 0.016). The assortativity coefficient was significantly predicted by continuous mild traumatic brain injury lifetime incidence [F1,144 = 6.51, P = 0.012]. No differences were observed between recency groups, and no global or local efficiency differences were observed between mild traumatic brain injury history and lifetime incidence groups. Brain networks with greater assortativity have more resilient, interconnected hubs, while those with lower assortativity indicate widely distributed, vulnerable hubs. Greater lifetime mild traumatic brain injury incidence predicted lower assortativity in our study sample. Less resilient brain networks may represent a lack of physiological recovery in mild traumatic brain injury patients, who otherwise demonstrate clinical recovery, more vulnerability to future brain injury and increased risk for accelerated age-related neurodegenerative changes. Future longitudinal studies should investigate whether decreased brain network resilience may be a predictor for long-term neurological dysfunction.

Funder

University of North Carolina at Chapel Hill

US Army Medical Research and Development Command

Publisher

Oxford University Press (OUP)

Subject

Neurology,Cellular and Molecular Neuroscience,Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3