Amygdala subnuclear volumes in temporal lobe epilepsy with hippocampal sclerosis and in non-lesional patients

Author:

Ballerini Alice1ORCID,Tondelli Manuela2,Talami Francesca1ORCID,Molinari Maria Angela3,Micalizzi Elisa4ORCID,Giovannini Giada34ORCID,Turchi Giulia3,Malagoli Marcella5,Genovese Maurilio5,Meletti Stefano13ORCID,Vaudano Anna Elisabetta13ORCID

Affiliation:

1. Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , Modena 41125 , Italy

2. Azienda USL , Modena 41121 , Italy

3. Neurology Unit, OCB Hospital, AOU Modena , Modena 41126 , Italy

4. PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia , Modena 41121 , Italy

5. Neuroradiology Unit, OCB Hospital, AOU Modena , Modena 41126 , Italy

Abstract

Abstract Together with hippocampus, the amygdala is important in the epileptogenic network of patients with temporal lobe epilepsy. Recently, an increase in amygdala volumes (i.e. amygdala enlargement) has been proposed as morphological biomarker of a subtype of temporal lobe epilepsy patients without MRI abnormalities, although other data suggest that this finding might be unspecific and not exclusive to temporal lobe epilepsy. In these studies, the amygdala is treated as a single entity, while instead it is composed of different nuclei, each with peculiar function and connection. By adopting a recently developed methodology of amygdala’s subnuclei parcellation based of high-resolution T1-weighted image, this study aims to map specific amygdalar subnuclei participation in temporal lobe epilepsy due to hippocampal sclerosis (n = 24) and non-lesional temporal lobe epilepsy (n = 24) with respect to patients with focal extratemporal lobe epilepsies (n = 20) and healthy controls (n = 30). The volumes of amygdala subnuclei were compared between groups adopting multivariate analyses of covariance and correlated with clinical variables. Additionally, a logistic regression analysis on the nuclei resulting statistically different across groups was performed. Compared with other populations, temporal lobe epilepsy with hippocampal sclerosis showed a significant atrophy of the whole amygdala (pBonferroni = 0.040), particularly the basolateral complex (pBonferroni = 0.033), while the non-lesional temporal lobe epilepsy group demonstrated an isolated hypertrophy of the medial nucleus (pBonferroni = 0.012). In both scenarios, the involved amygdala was ipsilateral to the epileptic focus. The medial nucleus demonstrated a volume increase even in extratemporal lobe epilepsies although contralateral to the seizure onset hemisphere (pBonferroni = 0.037). Non-lesional patients with psychiatric comorbidities showed a larger ipsilateral lateral nucleus compared with those without psychiatric disorders. This exploratory study corroborates the involvement of the amygdala in temporal lobe epilepsy, particularly in mesial temporal lobe epilepsy and suggests a different amygdala subnuclei engagement depending on the aetiology and lateralization of epilepsy. Furthermore, the logistic regression analysis indicated that the basolateral complex and the medial nucleus of amygdala can be helpful to differentiate temporal lobe epilepsy with hippocampal sclerosis and with MRI negative, respectively, versus controls with a consequent potential clinical yield. Finally, the present results contribute to the literature about the amygdala enlargement in temporal lobe epilepsy, suggesting that the increased volume of amygdala can be regarded as epilepsy-related structural changes common across different syndromes whose meaning should be clarified.

Funder

Dipartimento di eccellenza

Ministero dell'Istruzione, dell’Università e della Ricerca

Ministry of Health to the Azienda Ospedaliera-Universitaria di Modena

Emilia-Romagna regional

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3