Progressive thalamic nuclear atrophy in blepharospasm and blepharospasm-oromandibular dystonia

Author:

Xu Jinping1,Luo Yuhan2,Zhang Jiana2,Zhong Linchang3,Liu Huiming3,Weng Ai2,Yang Zhengkun2,Zhang Yue2,Ou Zilin2,Yan Zhicong2,Cheng Qinxiu1,Fan Xinxin1,Zhang Xiaodong1,Zhang Weixi2,Hu Qingmao1,Liang Dong1,Peng Kangqiang3,Liu Gang2

Affiliation:

1. Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China

2. Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology , Guangzhou 510080 , China

3. Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China

Abstract

Abstract The thalamus is considered a key region in the neuromechanisms of blepharospasm. However, previous studies considered it as a single, homogeneous structure, disregarding potentially useful information about distinct thalamic nuclei. Herein, we aimed to examine (i) whether grey matter volume differs across thalamic subregions/nuclei in patients with blepharospasm and blepharospasm-oromandibular dystonia; (ii) causal relationships among abnormal thalamic nuclei; and (iii) whether these abnormal features can be used as neuroimaging biomarkers to distinguish patients with blepharospasm from blepharospasm-oromandibular dystonia and those with dystonia from healthy controls. Structural MRI data were collected from 56 patients with blepharospasm, 20 with blepharospasm-oromandibular dystonia and 58 healthy controls. Differences in thalamic nuclei volumes between groups and their relationships to clinical information were analysed in patients with dystonia. Granger causality analysis was employed to explore the causal effects among abnormal thalamic nuclei. Support vector machines were used to test whether these abnormal features could distinguish patients with different forms of dystonia and those with dystonia from healthy controls. Compared with healthy controls, patients with blepharospasm exhibited reduced grey matter volume in the lateral geniculate and pulvinar inferior nuclei, whereas those with blepharospasm-oromandibular dystonia showed decreased grey matter volume in the ventral anterior and ventral lateral anterior nuclei. Atrophy in the pulvinar inferior nucleus in blepharospasm patients and in the ventral lateral anterior nucleus in blepharospasm-oromandibular dystonia patients was negatively correlated with clinical severity and disease duration, respectively. The proposed machine learning scheme yielded a high accuracy in distinguishing blepharospasm patients from healthy controls (accuracy: 0.89), blepharospasm-oromandibular dystonia patients from healthy controls (accuracy: 0.82) and blepharospasm from blepharospasm-oromandibular dystonia patients (accuracy: 0.94). Most importantly, Granger causality analysis revealed that a progressive driving pathway from pulvinar inferior nuclear atrophy extends to lateral geniculate nuclear atrophy and then to ventral lateral anterior nuclear atrophy with increasing clinical severity in patients with blepharospasm. These findings suggest that the pulvinar inferior nucleus in the thalamus is the focal origin of blepharospasm, extending to pulvinar inferior nuclear atrophy and subsequently extending to the ventral lateral anterior nucleus causing involuntary lower facial and masticatory movements known as blepharospasm-oromandibular dystonia. Moreover, our results also provide potential targets for neuromodulation especially deep brain stimulation in patients with blepharospasm and blepharospasm-oromandibular dystonia.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Key Project

Guangzhou Key Project

Science and Technology Program of Guangzhou

Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases

Southern China International Cooperation Base for Early Intervention and Functional Rehabilitation of Neurological Diseases

Shenzhen Science and Technology Research Program

Guangdong Provincial Engineering Center for Major Neurological Disease Treatment

Guangdong Provincial Translational Medicine Innovation Platform for Diagnosis and Treatment of Major Neurological Disease

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3