Resting-state connectivity within the brain’s reward system predicts weight loss and correlates with leptin

Author:

Schmidt Liane1ORCID,Medawar Evelyn2ORCID,Aron-Wisnewsky Judith34,Genser Laurent5,Poitou Christine3,Clément Karine3,Plassmann Hilke16

Affiliation:

1. Control-Interoception-Attention Team, Institut du Cerveau et de la Moelle épinière (ICM), Inserm UMR 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France

2. Laboratoire de Neuroscience Cognitive, Ecole Normale Supérieure, Inserm U960, 75005 Paris, France

3. Sorbonne Université, Inserm, UMRS Nutrition et Obésités; Systemic Approaches (NutriOmics), 75013 Paris, France

4. Nutrition Department, CRNH Ile de France, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, 75013 Paris, France

5. Visceral Surgery Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France

6. Marketing Area, INSEAD 77305, Fontainebleau, France

Abstract

Abstract Weight gain is often associated with the pleasure of eating food rich in calories. This idea is based on the findings that people with obesity showed increased neural activity in the reward and motivation systems of the brain in response to food cues. Such correlations, however, overlook the possibility that obesity may be associated with a metabolic state that impacts the functioning of reward and motivation systems, which in turn could be linked to reactivity to food and eating behaviour and weight gain. In a study involving 44 female participants [14 patients with obesity, aged 20–63 years (mean: 42, SEM: 3.2 years), and 30 matched lean controls, aged 22–60 years (mean: 37, SEM: 1.8 years)], we investigated how ventromedial prefrontal cortex seed-to-voxel resting-state connectivity distinguished between lean and obese participants at baseline. We used the results of this first step of our analyses to examine whether changes in ventromedial prefrontal cortex resting-state connectivity over 8 months could formally predict weight gain or loss. It is important to note that participants with obesity underwent bariatric surgery at the beginning of our investigation period. We found that ventromedial prefrontal cortex–ventral striatum resting-state connectivity and ventromedial–dorsolateral prefrontal cortex resting-state connectivity were sensitive to obesity at baseline. However, only the ventromedial prefrontal cortex–ventral striatum resting-state connectivity predicted weight changes over time using cross-validation, out-of-sample prediction analysis. Such an out-of-sample prediction analysis uses the data of all participants of a training set to predict the actually observed data in one independent participant in the hold-out validation sample and is then repeated for all participants. In seeking to explain the reason why ventromedial pre-frontal cortex–ventral striatum resting-state connectivity as the central hub of the brain’s reward and motivational system may predict weight change over time, we linked weight loss surgery-induced changes in ventromedial prefrontal cortex–ventral striatum resting-state connectivity to surgery-induced changes in homeostatic hormone regulation. More specifically, we focussed on changes in fasting state systemic leptin, a homeostatic hormone signalling satiety, and inhibiting reward-related dopamine signalling. We found that the surgery-induced increase in ventromedial prefrontal cortex–ventral striatum resting-state connectivity was correlated with a decrease in fasting-state systemic leptin. These findings establish the first link between individual differences in brain connectivity in reward circuits in a more tonic state at rest, weight change over time and homeostatic hormone regulation.

Funder

Sorbonne University Emergence Grant and Agence National de Recherche—European Research CouncilTemplin Grant

Institute of Cardiometabolism and Nutrition

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3