The estrogen-regulated lncRNA H19/miR-216a-5p axis alters stromal cell invasion and migration via ACTA2 in endometriosis

Author:

Xu Zhen1234,Zhang Liping1234,Yu Qian1234,Zhang Yanan1234,Yan Lei1234ORCID,Chen Zi-Jiang12345

Affiliation:

1. School of Medicine, Shandong University, 44 Wenhua West Road, Jinan, China

2. Reproductive Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China

3. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, 157 Jingliu Road, Jinan, China

4. Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China

5. Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, 845 Lingshan Road, Shanghai, China

Abstract

AbstractFibrotic tissue may contribute to the origin of some endometriosis-related symptoms, such as chronic pelvic pain and infertility. Alterations in the H19/miR-216a-5p/ACTA2 pathway may mediate the regulation of eutopic endometrial stromal cell (euESC) invasion and migration and may represent a potential mechanism underlying fibrous tissue formation or fibrosis in women with endometriosis. In this study, we aimed to determine the expression of H19 and ACTA2 in endometrial tissues of women with endometriosis. Two groups of 23 infertile women with endometriosis and 23 matched infertile women without endometriosis were investigated. Primary cultured cells of endometrial tissues were analyzed using RT-PCR and western blotting (WB) to determine expression of H19 and ACTA2. 5-Ethyl-2′-deoxyuridine, CCK8 and Transwell assays were used to study the functions of H19 and ACTA2. Human embryonic kidney 293 cells were used for luciferase assays to study miR-216a-5p binding sites with H19 and ACTA2. We found that H19 and ACTA2 levels were significantly higher in endometriosis euESCs than in control euESCs (P < 0.05) and were positively correlated in endometriosis euESCs. Luciferase assays indicated that H19 regulates ACTA2 expression via competition for inhibitory miR-216a-5p binding sites. Our results indicate that alterations in the estrogen/H19/miR-216a-5p/ACTA2 pathway regulated endometriosis euESC invasion and migration. Downregulation of H19 or ACTA2 inhibited endometriosis euESC invasion and migration; however, estrogen promoted endometriosis euESC invasion and migration via H19. The main limitation of our study was that experiments were conducted in vitro and further in vivo studies are required in the future. However, our study showed that primary cultured cells represented endometriosis cells more clearly than cell lines.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynaecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3