Intracellular fraction of zona pellucida protein 3 is required for the oocyte-to-embryo transition in mice

Author:

Israel Steffen1,Seyfarth Julia1,Nolte Thomas1,Drexler Hannes C A1,Fuellen Georg2ORCID,Boiani Michele1ORCID

Affiliation:

1. Max Planck Institute for Molecular Biomedicine, Department of Cell & Tissue Dynamics , Muenster, Germany

2. Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA) , Rostock, Germany

Abstract

Abstract In oocyte biology, the zona pellucida has long been known to operate three extracellular functions downstream of the secretory pathway, namely, encasing the oocytes in ovarian follicles, mediating sperm–oocyte interaction, and preventing premature embryo contact with oviductal epithelium. The present study uncovers a fourth function that is fundamentally distinct from the other three, being critical for embryonic cell survival in mice. Intriguingly, the three proteins of the mouse zona pellucida (ZP1, ZP2, ZP3) were found abundantly present also inside the embryo 4 days after fertilization, as shown by mass spectrometry, immunoblotting, and immunofluorescence. Contrary to current understanding of the roles of ZP proteins, ZP3 was associated more with the cytoskeleton than with secretory vesicles in the subcortical region of metaphase II oocytes and zygotes, and was excluded from regions of cell–cell contact in cleavage-stage embryos. Trim-away-mediated knockdown of ZP3 in fertilized oocytes hampered the first zygotic cleavage, while ZP3 overexpression supported blastocyst formation. Transcriptome analysis of ZP3-knockdown embryos pointed at defects of cytoplasmic translation in the context of embryonic genome activation. This conclusion was supported by reduced protein synthesis in the ZP3-knockdown and by the lack of cleavage arrest when Trim-away was postponed from the one-cell to the late two-cell stage. These data place constraints on the notion that zona proteins only operate in the extracellular space, revealing also a role during the oocyte-to-embryo transition. Ultimately, these data recruit ZP3 into the family of maternal factors that contribute to developmental competence of mouse oocytes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3