UV-DDB stimulates the activity of SMUG1 during base excision repair of 5-hydroxymethyl-2'-deoxyuridine moieties

Author:

Jang Sunbok123,Raja Sripriya J14,Roginskaya Vera13,Schaich Matthew A13,Watkins Simon C5,Van Houten Bennett143ORCID

Affiliation:

1. UPMC Hillman Cancer Center, University of Pittsburgh , Pittsburgh , PA  15213, USA

2. College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul  03760, Republic of Korea

3. Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh , PA  15213, USA

4. Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh , Pittsburgh , PA  15213, USA

5. Center for Biologic Imaging, University of Pittsburgh , Pittsburgh , PA  15261, USA

Abstract

Abstract UV-damaged DNA-binding protein (UV-DDB) is a heterodimeric protein, consisting of DDB1 and DDB2 subunits, that works to recognize DNA lesions induced by UV damage during global genome nucleotide excision repair (GG-NER). Our laboratory previously discovered a non-canonical role for UV-DDB in the processing of 8-oxoG, by stimulating 8-oxoG glycosylase, OGG1, activity 3-fold, MUTYH activity 4-5-fold, and APE1 (apurinic/apyrimidinic endonuclease 1) activity 8-fold. 5-hydroxymethyl-deoxyuridine (5-hmdU) is an important oxidation product of thymidine which is removed by single-strand selective monofunctional DNA glycosylase (SMUG1). Biochemical experiments with purified proteins indicated that UV-DDB stimulates the excision activity of SMUG1 on several substrates by 4-5-fold. Electrophoretic mobility shift assays indicated that UV-DDB displaced SMUG1 from abasic site products. Single-molecule analysis revealed that UV-DDB decreases the half-life of SMUG1 on DNA by ∼8-fold. Immunofluorescence experiments demonstrated that cellular treatment with 5-hmdU (5 μM for 15 min), which is incorporated into DNA during replication, produces discrete foci of DDB2-mCherry, which co-localize with SMUG1-GFP. Proximity ligation assays supported a transient interaction between SMUG1 and DDB2 in cells. Poly(ADP)-ribose accumulated after 5-hmdU treatment, which was abrogated with SMUG1 and DDB2 knockdown. These data support a novel role for UV-DDB in the processing of the oxidized base, 5-hmdU.

Funder

NIH

John S. Lazo Cancer Pharmacology

National Research Foundation of Korea

MSIT

Hillman Postdoctoral Fellowship for Innovative Cancer Research

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3