On the rules of engagement for microRNAs targeting protein coding regions

Author:

Sapkota Sunil1,Pillman Katherine A12ORCID,Dredge B Kate1,Liu Dawei1,Bracken Julie M1,Kachooei Saba Ataei1,Chereda Bradley1,Gregory Philip A13,Bracken Cameron P134ORCID,Goodall Gregory J134ORCID

Affiliation:

1. Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia , Adelaide , SA  5000 , Australia

2. ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology , Adelaide , SA  5000 , Australia

3. Faculty of Health and Medical Sciences, The University of Adelaide , Adelaide , SA  5000 , Australia

4. School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide , Adelaide , SA  5000 , Adelaide

Abstract

Abstract MiRNAs post-transcriptionally repress gene expression by binding to mRNA 3′UTRs, but the extent to which they act through protein coding regions (CDS regions) is less well established. MiRNA interaction studies show a substantial proportion of binding occurs in CDS regions, however sequencing studies show much weaker effects on mRNA levels than from 3′UTR interactions, presumably due to competition from the translating ribosome. Consequently, most target prediction algorithms consider only 3′UTR interactions. However, the consequences of CDS interactions may have been underestimated, with the reporting of a novel mode of miRNA-CDS interaction requiring base pairing of the miRNA 3′ end, but not the canonical seed site, leading to repression of translation with little effect on mRNA turnover. Using extensive reporter, western blotting and bioinformatic analyses, we confirm that miRNAs can indeed suppress genes through CDS-interaction in special circumstances. However, in contrast to that previously reported, we find repression requires extensive base-pairing, including of the canonical seed, but does not strictly require base pairing of the 3′ miRNA terminus and is mediated through reducing mRNA levels. We conclude that suppression of endogenous genes can occur through miRNAs binding to CDS, but the requirement for extensive base-pairing likely limits the regulatory impacts to modest effects on a small subset of targets.

Funder

National Health and Medical Research Council

Australian Research Council

University of South Australia

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3