Cavity hairpin ThT-light nucleic acid switches: the construction of label- and enzyme-free sensing and imaging platforms

Author:

Lan Xinyue12,Zhu Longjiao1,Zhang Yangzi12,Chen Keren12,Wang Jia1,Du Zaihui12,Li Shuting12,Chen Xu12,Xu Wentao1ORCID

Affiliation:

1. Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University , No. 17, Qinghua East Road , Beijing 100193 , China

2. Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University , No. 17, Qinghua East Road , Beijing 100083 , China

Abstract

Abstract Thioflavin T (ThT) is a classical fluorescent dye gaining prominence in current research regarding nucleic acid conformations (NACs). However, most NACs with the ability to excite ThT fluorescent are unique or form in demanding conditions, limiting the extensiveness and depth of ThT application in sensing and imaging. Therefore, this study proposed CGG-AAA mismatched cavity hairpin ThT-light nucleic acid switches (CHTLNAS) with excellent fluorescence excitation over 500-fold higher than spontaneous, 17∼20-fold higher than ssDNA and 2.5∼5-fold higher than complementary duplex. Based on the excellent fluorescence excitation, convenient conformation formation, good sequence programmability, and flexible allosteric ability (known as the Worm-crack pod mechanism mediated by the target), it achieved the label- and enzyme-free detection of tetracycline (TET) and berberine (BB) at the pM level within 10 min. Moreover, it was found enable to realize the sensitive tracking of intracellular carriers at the nM level of ThT entry concentration, and prolongated its cell nuclear-entry time of ThT over 8 h, overcoming the non-specific high background signal interference of ThT in the nuclear region, and expanding the diversified application of ThT in cell biology research. Therefore, CHTLNAS is a more universal, practical tool than G-quadruplex or other kinds of NACs for ThT development and utilization in sensing and imaging platforms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research and Development Program of Hebei Province

China Agricultural University

Young Elite Scientist Sponsorship Program by BAST

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3