New twists of a TAIL: novel insights into the histone binding properties of a highly conserved PHD finger cluster within the MLR family of H3K4 mono-methyltransferases

Author:

Zraly Claudia B1,Schultz Richard2,Diaz Manuel O1,Dingwall Andrew K1ORCID

Affiliation:

1. Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago , Maywood, IL 60153, USA

2. Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago , Maywood, IL 60153, USA

Abstract

Abstract Enhancer activation by the MLR family of H3K4 mono-methyltransferases requires proper recognition of histones for the deposition of the mono-methyl mark. MLR proteins contain two clusters of PHD zinc finger domains implicated in chromatin regulation. The second cluster is the most highly conserved, preserved as an ancient three finger functional unit throughout evolution. Studies of the isolated 3rd PHD finger within this cluster suggested specificity for the H4 [aa16–20] tail region. We determined the histone binding properties of the full three PHD finger cluster b module (PHDb) from the Drosophila Cmi protein which revealed unexpected recognition of an extended region of H3. Importantly, the zinc finger spacer separating the first two PHDb fingers from the third is critical for proper alignment and coordination among fingers for maximal histone engagement. Human homologs, MLL3 and MLL4, also show conservation of H3 binding, expanding current views of histone recognition for this class of proteins. We further implicate chromatin remodeling by the SWI/SNF complex as a possible mechanism for the accessibility of PHDb to globular regions of histone H3 beyond the tail region. Our results suggest a two-tail histone recognition mechanism by the conserved PHDb domain involving a flexible hinge to promote interdomain coordination.

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3