Identification and quantification of small exon-containing isoforms in long-read RNA sequencing data

Author:

Liu Zhen12,Zhu Chenchen3,Steinmetz Lars M34,Wei Wu125ORCID

Affiliation:

1. Lingang Laboratory , Shanghai, Shanghai  200031 , China

2. CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai, Shanghai  200031 , China

3. Department of Genetics, School of Medicine, Stanford University , Stanford , CA  94305 , USA

4. Stanford Genome Technology Center, Stanford University , Palo Alto , CA  94304 , USA

5. Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai, Shanghai  200040 , China

Abstract

Abstract Small exons are pervasive in transcriptomes across organisms, and their quantification in RNA isoforms is crucial for understanding gene functions. Although long-read RNA-seq based on Oxford Nanopore Technologies (ONT) offers the advantage of covering transcripts in full length, its lower base accuracy poses challenges for identifying individual exons, particularly microexons (≤ 30 nucleotides). Here, we systematically assess small exons quantification in synthetic and human ONT RNA-seq datasets. We demonstrate that reads containing small exons are often not properly aligned, affecting the quantification of relevant transcripts. Thus, we develop a local-realignment method for misaligned exons (MisER), which remaps reads with misaligned exons to the transcript references. Using synthetic and simulated datasets, we demonstrate the high sensitivity and specificity of MisER for the quantification of transcripts containing small exons. Moreover, MisER enabled us to identify small exons with a higher percent spliced-in index (PSI) in neural, particularly neural-regulated microexons, when comparing 14 neural to 16 non-neural tissues in humans. Our work introduces an improved quantification method for long-read RNA-seq and especially facilitates studies using ONT long-reads to elucidate the regulation of genes involving small exons.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Major Science and Technology R&D Project of the Science and Technology Department of Jiangxi Province

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3