The Use of Metabolomics to Identify Biological Signatures of Manganese Exposure

Author:

Baker Marissa G1,Simpson Christopher D1,Lin Yvonne S2,Shireman Laura M2,Seixas Noah1

Affiliation:

1. Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA

2. Department of Pharmaceutics, University of Washington, Seattle WA, USA

Abstract

Abstract Objectives Manganese (Mn) is a known neurotoxicant, and given its health effects and ubiquitous nature in metal-working settings, identification of a valid and reproducible biomarker of Mn exposure is of interest. Here, global metabolomics is utilized to determine metabolites that differ between groups defined by Mn exposure status, with the goal being to help inform a potential metabolite biomarker of Mn exposure. Methods Mn exposed subjects were recruited from a Mn steel foundry and Mn unexposed subjects were recruited from crane operators at a metal recycling facility. Over the course of a work day, each subject wore a personal inhalable dust sampler (IOM), and provided an end of shift urine sample that underwent global metabolomics profiling. Both exposed and unexposed subjects were divided into a training set and demographically similar validation set. Using a two-sided adjusted t-test, relative abundances of all metabolites found were compared between Mn exposed and unexposed training sets, and those with a false discovery rates (FDR) <0.1 were further tested in the validation sets. Results Fifteen ions were found to be significantly different (FDR < 0.1) between the exposed and unexposed training sets, and nine of these ions remained significantly different between the exposed and unexposed validation set as well. When further dividing exposure status into ‘lower exposure’ and ‘higher exposure’, several of these nine ions exhibited an apparent exposure–response relationship. Conclusions This is the first time that metabolomics has been used to distinguish between Mn exposure status in an occupational cohort, though additional work should be done to replicate these findings with a larger cohort. With metabolite identification by name, empirical formula, or pathway, a better understanding of the relationship between Mn exposure and neurotoxic effects could be elucidated, and a potential metabolite biomarker of Mn exposure could be determined.

Funder

National Institute of Environmental Health Sciences

National Institutes of Health

National Research Service

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3