Evaluation of genetic change from translocation among Gunnison Sage-Grouse (Centrocercus minimus) populations

Author:

Zimmerman Shawna J1,Aldridge Cameron L2,Apa Anthony D3,Oyler-McCance Sara J4

Affiliation:

1. Graduate Degree Program in Ecology, and Natural Resource Ecology Laboratory, Colorado State University, in Cooperation with U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA

2. Department of Ecosystem Science and Sustainability, and Natural Resource Ecology Laboratory, Colorado State University, in Cooperation with U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA

3. Colorado Division of Parks and Wildlife, Grand Junction, Colorado, USA

4. U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA

Abstract

Abstract Maintenance of genetic diversity is important for conserving species, especially those with fragmented habitats or ranges. In the absence of natural dispersal, translocation can be used to achieve this goal, although the success of translocation can be difficult to measure. Here we evaluate genetic change following translocation in Gunnison Sage-Grouse (Centrocercus minimus), a species reduced to 7 discrete populations with low levels of gene flow and high levels of genetic differentiation. Between 2000 and 2014, 306 birds from the largest and most genetically diverse population (Gunnison Basin) were translocated to 5 much smaller satellite populations to augment local population size and increase genetic diversity. Although the magnitude of the effect varied by population, we found evidence of increased genetic variation, decreased genetic differentiation from Gunnison Basin, and reproduction between translocated individuals and resident birds. These results suggest that translocations are impacting satellite populations, with current data providing a new baseline for genetic diversity among populations of this imperiled species.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3