NSD3S stabilizes MYC through hindering its interaction with FBXW7

Author:

Gonzalez-Pecchi Valentina12,Kwan Albert K2,Doyle Sean2,Ivanov Andrey A234,Du Yuhong23,Fu Haian234

Affiliation:

1. Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA

2. Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA, USA

3. Winship Cancer Institute, Emory University, Atlanta, GA, USA

4. Department of Hematology & Medical Oncology, Emory University, Atlanta, GA, USA

Abstract

Abstract The MYC transcription factor plays a key role in cell growth control. Enhanced MYC protein stability has been found to promote tumorigenesis. Thus, understanding how MYC stability is controlled may have significant implications for revealing MYC-driven growth regulatory mechanisms in physiological and pathological processes. Our previous work identified the histone lysine methyltransferase nuclear receptor binding SET domain protein 3 (NSD3) as a MYC modulator. NSD3S, a noncatalytic isoform of NSD3 with oncogenic activity, appears to bind, stabilize, and activate the transcriptional activity of MYC. However, the mechanism by which NSD3S stabilizes MYC remains to be elucidated. To uncover the nature of the interaction and the underlying mechanism of MYC regulation by NSD3S, we characterized the binding interface between both proteins by narrowing the interface to a 15-amino acid region in NSD3S that is partially required for MYC regulation. Mechanistically, NSD3S binds to MYC and reduces the association of F-box and WD repeat domain containing 7 (FBXW7) with MYC, which results in suppression of FBXW7-mediated proteasomal degradation of MYC and an increase in MYC protein half-life. These results support a critical role for NSD3S in the regulation of MYC function and provide a novel mechanism for NSD3S oncogenic function through inhibition of FBXW7-mediated degradation of MYC.

Funder

National Institute of Health NCI Cancer Target Discovery and Development

Georgia Cancer Coalition

Georgia Research Alliance

Emory Chemical Biology Discovery Center

Winship Cancer Institute

Fulbright Scholarship and Becas Chile-CONICYT

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3