Multiscale pore network modeling and flow property analysis for tight sandstone: a case study

Author:

Wu Xiang12,Wang Fei1,Xiao Zhanshan2,Zhang Yonghao2,Zhao Jianbin2,Fang Chaoqiang2,Wei Bo2

Affiliation:

1. College of Geology Engineering and Geomatics, Chang'an University , Xi'an City, Shaanxi Province, 710054 , China

2. Geological Research Institute, China National Logging Corporation , Xi'an City, Shaanxi Province, 710054 , China

Abstract

Abstract Digital rock characterization enables high-fidelity quantification of core samples, facilitating computational studies of physical properties at the microscopic scale. Multiscale tomographic imaging resolves microstructural features from sub-nanometer to millimeter dimensions. However, single-resolution volumes preclude capturing cross-scale morphological attributes due to the inverse relationship between the field of view and resolution. Constructing multiscale, multiresolution, multiphase digital rock model is therefore imperative for reconciling this paradox. We performed multiscale scanning imaging on tight sandstone samples. Based on pore network model integration algorithms, we constructed dual-scale pore network model (PNM) and fracture-pore hybrid network model to analyze their flow characteristics. Results showed that the absolute permeability of the dual-scale PNM exhibited a distinct linear increase with the number of extra cross-scale throats and throat factor, but the rate of increase became smaller when the throat factor exceeded 0.6. For dual-scale pore network with cross-scale throat and throat factor of 1 and 0.7, the predicted porosity matched experimental results well. For the fracture-pore hybrid network model, the relationship between absolute permeability and cross-scale throat properties is similar to the dual-scale PNM. When fluid flow was parallel to the fracture orientation, permeability increased markedly with fracture aperture as a power-law function. However, the dip angle did not induce obvious permeability variation trends across different flow directions.

Funder

China National Petroleum Corporation

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3