Contribution of semen to early embryo development: fertilization and beyond

Author:

Vallet-Buisan Montserrat1,Mecca Rajwa1,Jones Celine1,Coward Kevin1ORCID,Yeste Marc234ORCID

Affiliation:

1. Nuffield Department of Women’s and Reproductive Health, Level 3, Women’s Centre, John Radcliffe Hospital, University of Oxford , Oxford, UK

2. Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona , Girona, Spain

3. Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona , Girona, Spain

4. Catalan Institution for Research and Advanced Studies (ICREA) , Barcelona, Spain

Abstract

AbstractBACKGROUNDIt has long been thought that the factors affecting embryo and foetal development were exclusively maternally derived; hence, if issues regarding fertility and embryo development were to arise, the blame has traditionally been placed solely on the mother. An escalating interest in how paternal factors influence embryo development, however, has begun to prove otherwise. Evidence suggests that both seminal plasma (SP) and sperm contribute multiple factors that shape embryogenesis. This review thus focuses on the role that semen has in driving early embryonic development, and describes how paternal factors, such as SP, sperm centriole, sperm proteins, sperm RNA, sperm DNA, and its integrity, together with epigenetics, may influence the female reproductive tract and post-fertilization events. The important contributions of paternal factors to embryo development highlight the imperative need for further research in this area, which is sure to bring forth breakthroughs leading to improvements in infertility diagnosis and ART as well as reducing the risk of miscarriage.OBJECTIVE AND RATIONALEThis review provides a comprehensive overview of the role of human semen in development of the early embryo, with the aim of providing a better understanding of the influence of SP and sperm on early embryonic divisions, gene and protein expression, miscarriage, and congenital diseases.SEARCH METHODSPubMed searches were performed using the terms ‘sperm structure’, ‘capacitation’, ‘acrosome reaction’, ‘fertilization’, ‘oocyte activation’, ‘PLCζ’, ‘PAWP’, ‘sperm-borne oocyte activation factor’, ‘oocyte activation deficiency’, ‘sperm centriole’, ‘sperm transport’, ‘sperm mitochondria’, ‘seminal plasma’, ‘sperm epigenetics’, ‘sperm histone modifications’, ‘sperm DNA methylation’, ‘sperm-derived transcripts’, ‘sperm-derived proteins’, ‘sperm DNA fragmentation’, ‘sperm mRNA’, ‘sperm miRNAs’, ‘sperm piRNAs’, and ‘sperm-derived aneuploidy’. The reviewed articles were restricted to those published in English between 1980 and 2022.OUTCOMESThe data suggest that male-derived factors contribute much more than just the male haploid genome to the early embryo. Evidence indicates that semen contributes multiple factors that help shape the fate of embryogenesis. These male-derived factors include contributions from SP, the paternal centriole, RNA and proteins, and DNA integrity. In addition, epigenetic changes have an impact on the female reproductive tract, fertilization, and early stages of embryo development. For example, recent proteomic and transcriptomic studies have identified several sperm-borne markers that play important roles in oocyte fertilization and embryogenesis.WIDER IMPLICATIONSThis review highlights that several male-derived factors are required to work in tandem with female counterparts to allow for correct fertilization and development of the early embryo. A deeper understanding of the contributions of paternal factors that are shuttled over from the sperm cell to the embryo can shed light on how to improve ART from an andrological perspective. Further studies may aid in preventing the passing on of genetic and epigenetic abnormalities of paternal origin, thus decreasing the incidence of male factor infertility. In addition, understanding the exact mechanisms of paternal contribution may assist reproductive scientists and IVF clinicians in determining new causes of recurrent early miscarriage or fertilization failure.

Funder

Regional Government of Catalonia

Catalan Institution for Research and Advanced Studies

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Reproductive Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3