The functions of CAP superfamily proteins in mammalian fertility and disease

Author:

Gaikwad Avinash S1,Hu Jinghua1,Chapple David G1,O’Bryan Moira K1ORCID

Affiliation:

1. School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia

Abstract

AbstractBACKGROUNDMembers of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology.OBJECTIVE AND RATIONALEThe aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis.SEARCH METHODSThe scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: ‘CAP superfamily’, ‘CRISP’, ‘Cysteine-rich secretory proteins’, ‘Antigen 5’, ‘Pathogenesis-related 1’, ‘male fertility’, ‘CAP and CTL domain containing’, ‘CRISPLD1’, ‘CRISPLD2’, ‘bacterial SCP’, ‘ion channel regulator’, ‘CatSper’, ‘PI15’, ‘PI16’, ‘CLEC’, ‘PRY proteins’, ‘ASP proteins’, ‘spermatogenesis’, ‘epididymal maturation’, ‘capacitation’ and ‘snake CRISP’. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications.OUTCOMESIn this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation.WIDER IMPLICATIONSThis review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3