Assessing the influence of preconception diet on male fertility: a systematic scoping review

Author:

Tully Cathryn A12,Alesi Simon3ORCID,McPherson Nicole O456,Sharkey David J46,Teong Xiao Tong17,Tay Chau Thien3,Silva Thais Rasia8,Puglisi Carolyn9,Barsby Jacqueline P49,Moran Lisa J34ORCID,Grieger Jessica A14ORCID,Mousa Aya3ORCID

Affiliation:

1. Adelaide Medical School, The University of Adelaide , Adelaide, SA, Australia

2. Repromed , Dulwich, Adelaide, SA, Australia

3. Monash Centre for Health Research and Implementation (MCHRI), Monash University , Clayton, VIC, Australia

4. Robinson Research Institute, The University of Adelaide , Adelaide, SA, Australia

5. Freemasons Center for Male Health and Wellbeing, The University of Adelaide , Adelaide, SA, Australia

6. School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide , Adelaide, SA, Australia

7. Lifelong Health Theme, South Australian Health and Medical Research Institute , Adelaide, SA, Australia

8. Postgraduate Program in Endocrinology and Metabolism, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil

9. School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, Urrbrae, SA , Australia

Abstract

Abstract BACKGROUND The last decade has seen increased research on the relationship between diet and male fertility, but there are no clearly defined nutritional recommendations for men in the preconception period to support clinical fertility outcomes. OBJECTIVE AND RATIONALE The purpose of this scoping review is to examine the extent and range of research undertaken to evaluate the effect(s) of diet in the preconception period on male clinical fertility and reproductive outcomes. SEARCH METHODS Four electronic databases (MEDLINE and EMBASE via Ovid, CAB Direct, and CINAHL via EBSCO) were searched from inception to July 2023 for randomized controlled trials (RCTs) and observational studies (prospective/retrospective, case–control, and cross-sectional). Intervention studies in male participants or couples aiming to achieve dietary or nutritional change, or non-intervention studies examining dietary or nutritional components (whole diets, dietary patterns, food groups or individual foods) in the preconception period were included. Controls were defined as any comparison group for RCTs, and any/no comparison for observational studies. Primary outcomes of interest included the effect(s) of male preconception diet on clinical outcomes such as conception (natural or via ART), pregnancy rates and live birth rates. Secondary outcomes included time to conception and sperm parameters. OUTCOMES A total of 37 studies were eligible, including one RCT and 36 observational studies (prospective, cross-sectional, and case–control studies; four studies in non-ART populations) published between 2008 and 2023. Eight reported clinical outcomes, 26 reported on secondary outcomes, and three reported on both. The RCT did not assess clinical outcomes but found that tomato juice may benefit sperm motility. In observational studies, some evidence suggested that increasing fish or reducing sugar-sweetened beverages, processed meat or total fat may improve fecundability. Evidence for other clinical outcomes, such as pregnancy rates or live birth rates, showed no relationship with cereals, soy and dairy, and inconsistent relationships with consuming red meat or a ‘healthy diet’ pattern. For improved sperm parameters, limited evidence supported increasing fish, fats/fatty acids, carbohydrates and dairy, and reducing processed meat, while the evidence for fruits, vegetables, cereals, legumes, eggs, red meat and protein was inconsistent. Healthy diet patterns in general were shown to improve sperm health. WIDER IMPLICATIONS Specific dietary recommendations for improving male fertility are precluded by the lack of reporting on clinical pregnancy outcomes, heterogeneity of the available literature and the paucity of RCTs to determine causation or to rule out reverse causation. There may be some benefit from increasing fish, adopting a healthy dietary pattern, and reducing consumption of sugar-sweetened beverages and processed meat, but it is unclear whether these benefits extend beyond sperm parameters to improve clinical fertility. More studies exploring whole diets rather than singular foods or nutritional components in the context of male fertility are encouraged, particularly by means of RCTs where feasible. Further assessment of core fertility outcomes is warranted and requires careful planning in high-quality prospective studies and RCTs. These studies can lay the groundwork for targeted dietary guidelines and enhance the prospects of successful fertility outcomes for men in the preconception period. Systematic search of preconception diet suggests that increasing fish and reducing sugary drinks, processed meats and total fat may improve male fertility, while consuming healthy diets, fish, fats/fatty acids, carbohydrates and dairy and reducing processed meat can improve sperm health.

Funder

Monash University Faculty Graduate Research Stipend

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3