Sleep deprivation in adolescent mice impairs long-term memory till early adulthood via suppression of hippocampal astrocytes

Author:

Kang Ji-Yun1,Lee Jin-Seok12,Wang Jing-Hua12,Son Chang-Gue12

Affiliation:

1. Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University , Daejeon , South Korea

2. Research Center for CFS/ME, Daejeon Hospital of Daejeon University , Daejeon , Republic of Korea

Abstract

Abstract Sleep deficiency is a rampant issue in modern society, serving as a pathogenic element contributing to learning and memory impairment, with heightened sensitivity observed in children. Clinical observations suggest that learning disabilities associated with insufficient sleep during adolescence can persist through adulthood, but experimental evidence for this is lacking. In this study, we examined the impact of early-life sleep deprivation (SD) on both short-term and long-term memory, tracking the effects sequentially into adulthood. We employed a modified multiple-platform method mouse model to investigate these outcomes. SD induced over a 14-day period, beginning on postnatal day 28 (PND28) in mice, led to significant impairment in long-term memory (while short-term memory remained unaffected) at PND42. Notably, this dysfunction persisted into adulthood at PND85. The specific impairment observed in long-term memory was elucidated through histopathological alterations in hippocampal neurogenesis, as evidenced by bromodeoxyuridine (BrdU) signals, observed both at PND42 and PND85. Furthermore, the hippocampal region exhibited significantly diminished protein expressions of astrocytes, characterized by lowered levels of aquaporin 4 (AQP4), a representative molecule involved in brain clearance processes, and reduced protein expressions of brain-derived neurotrophic factors. In conclusion, we have presented experimental evidence indicating that sleep deficiency-related impairment of long-term memory in adolescence can endure into adulthood. The corresponding mechanisms may indicate that the modification of astrocyte-related molecules has led to changes in hippocampal neurogenesis.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3