Sleep spindle alterations relate to working memory deficits in individuals at clinical high-risk for psychosis

Author:

Mayeli Ahmad1ORCID,Wilson James D1,Donati Francesco L1ORCID,LaGoy Alice D1,Ferrarelli Fabio1

Affiliation:

1. Department of Psychiatry, University of Pittsburgh , Pittsburgh, PA , USA

Abstract

Abstract Study Objectives Sleep spindles are waxing and waning EEG waves exemplifying the main fast oscillatory activity occurring during NREM sleep. Several recent studies have established that sleep spindle abnormalities are present in schizophrenia spectrum disorders, including in early-course and first-episode patients, and those spindle deficits are associated with some of the cognitive impairments commonly observed in these patients. Cognitive deficits are often observed before the onset of psychosis and seem to predict poor functional outcomes in individuals at clinical high-risk for psychosis (CHR). Yet, the presence of spindle abnormalities and their relationship with cognitive dysfunction has not been investigated in CHR. Methods In this study, overnight high-density (hd)-EEG recordings were collected in 24 CHR and 24 healthy control (HC) subjects. Spindle density, duration, amplitude, and frequency were computed and compared between CHR and HC. Furthermore, WM was assessed for both HC and CHR, and its relationship with spindle parameters was examined. Results CHR had reduced spindle duration in centro-parietal and prefrontal regions, with the largest decrease in the right prefrontal area. Moderation analysis showed that the relation between spindle duration and spindle frequency was altered in CHR relative to HC. Furthermore, CHR had reduced WM performance compared to HC, which was predicted by spindle frequency, whereas in HC spindle frequency, duration, and density all predicted working memory performance. Conclusion Altogether, these findings indicate that sleep spindles are altered in CHR individuals, and spindle alterations are associated with their cognitive deficits, thus representing a sleep-specific putative neurophysiological biomarker of cognitive dysfunction in psychosis risk.

Funder

National Institute of Mental Health

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3