Affiliation:
1. Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
2. Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
Abstract
Abstract
Study Objectives
Develop a high-performing, automated sleep scoring algorithm that can be applied to long-term scalp electroencephalography (EEG) recordings.
Methods
Using a clinical dataset of polysomnograms from 6,431 patients (MGH–PSG dataset), we trained a deep neural network to classify sleep stages based on scalp EEG data. The algorithm consists of a convolutional neural network for feature extraction, followed by a recurrent neural network that extracts temporal dependencies of sleep stages. The algorithm’s inputs are four scalp EEG bipolar channels (F3-C3, C3-O1, F4-C4, and C4-O2), which can be derived from any standard PSG or scalp EEG recording. We initially trained the algorithm on the MGH–PSG dataset and used transfer learning to fine-tune it on a dataset of long-term (24–72 h) scalp EEG recordings from 112 patients (scalpEEG dataset).
Results
The algorithm achieved a Cohen’s kappa of 0.74 on the MGH–PSG holdout testing set and cross-validated Cohen’s kappa of 0.78 after optimization on the scalpEEG dataset. The algorithm also performed well on two publicly available PSG datasets, demonstrating high generalizability. Performance on all datasets was comparable to the inter-rater agreement of human sleep staging experts (Cohen’s kappa ~ 0.75 ± 0.11). The algorithm’s performance on long-term scalp EEGs was robust over a wide age range and across common EEG background abnormalities.
Conclusion
We developed a deep learning algorithm that achieves human expert level sleep staging performance on long-term scalp EEG recordings. This algorithm, which we have made publicly available, greatly facilitates the use of large long-term EEG clinical datasets for sleep-related research.
Funder
American Academy of Neurology Institute
Glenn Foundation
American Federation for Aging Research
National Institutes of Health
National Heart, Lung, and Blood Institute
Publisher
Oxford University Press (OUP)
Subject
Physiology (medical),Neurology (clinical)
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献