The Integrative Biology of Pigment Organelles, a Quantum Chemical Approach

Author:

Figon Florent1ORCID,Casas Jérôme1

Affiliation:

1. Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261, Université de Tours, Tours 37200, France

Abstract

Synopsis Coloration is a complex phenotypic trait involving both physical and chemical processes at a multiscale level, from molecules to tissues. Pigments, whose main property is to absorb specific wavelengths of visible light, are usually deposited in specialized organelles or complex matrices comprising proteins, metals, ions, and redox compounds, among others. By modulating electronic properties and stability, interactions between pigments and these molecular actors can lead to color tuning. Furthermore, pigments are not only important for visual effects but also provide other critical functions, such as detoxification and antiradical activity. Hence, integrative studies of pigment organelles are required to understand how pigments interact with their cellular environment. In this review, we show how quantum chemistry, a computational method that models the molecular and optical properties of pigments, has provided key insights into the mechanisms by which pigment properties, from color to reactivity, are modulated by their organellar environment. These results allow us to rationalize and predict the way pigments behave in supramolecular complexes, up to the complete modeling of pigment organelles. We also discuss the main limitations of quantum chemistry, emphasizing the need for carrying experimental work with identical vigor. We finally suggest that taking into account the ecology of pigments (i.e., how they interact with these various other cellular components and at higher organizational levels) will lead to a greater understanding of how and why animals are vividly and variably colored, two fundamental questions in organismal biology.

Funder

The ENS de Lyon and the project "PHEROAERO" of the Région Centre

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Barriers and Promises of the Developing Pigment Organelle Field;Integrative and Comparative Biology;2021-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3