Closer Appendage Spacing Augments Metachronal Swimming Speed by Promoting Tip Vortex Interactions

Author:

Ford Mitchell P1,Santhanakrishnan Arvind1ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

Abstract Numerous species of aquatic invertebrates, including crustaceans, swim by oscillating multiple closely spaced appendages. The coordinated, out-of-phase motion of these appendages, known as “metachronal paddling,” has been well-established to improve swimming performance relative to synchronous paddling. Invertebrates employing this propulsion strategy cover a wide range of body sizes and shapes, but the ratio of appendage spacing (G) to the appendage length (L) has been reported to lie in a comparatively narrow range of 0.2 < G/L ≤ 0.65. The functional role of G/L on metachronal swimming performance is unknown. We hypothesized that for a given Reynolds number and stroke amplitude, hydrodynamic interactions promoted by metachronal stroke kinematics with small G/L can increase forward swimming speed. We used a dynamically scaled self-propelling robot to comparatively examine swimming performance and wake development of metachronal and synchronous paddling under varying G/L, phase lag, and stroke amplitude. G/L was varied from 0.4 to 1.5, with the expectation that when G/L is large, there should be no performance difference between metachronal and synchronous paddling due to a lack of interaction between vortices that form on the appendages. Metachronal stroking at nonzero phase lag with G/L in the biological range produced faster swimming speeds than synchronous stroking. As G/L increased and as stroke amplitude decreased, the influence of phase lag on the swimming speed of the robot was reduced. For smaller G/L, vortex interactions between adjacent appendages generated a horizontally oriented wake and increased momentum fluxes relative to larger G/L, which contributed to increasing swimming speed. We find that while metachronal motion augments swimming performance for closely spaced appendages (G/L <1), moderately spaced appendages (1.0 ≤ G/L ≤ 1.5) can benefit from the metachronal motion only when the stroke amplitude is large.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3