A wish list for synthetic biology in photosynthesis research

Author:

Zhu Xin-Guang1,Ort Donald R2,Parry Martin A J3,von Caemmerer Susanne4

Affiliation:

1. Institute of Plant Physiology and Ecology and Center for Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China

2. Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA

3. Lancaster Environment Centre, Lancaster University, Lancaster, UK

4. Research School of Biological Sciences, Australian National University, Acton, Australia

Abstract

Abstract This perspective summarizes the presentations and discussions at the ‘ International Symposium on Synthetic Biology in Photosynthesis Research’, which was held in Shanghai in 2018. Leveraging the current advanced understanding of photosynthetic systems, the symposium brain-stormed about the redesign and engineering of photosynthetic systems for translational goals and evaluated available new technologies/tools for synthetic biology as well as technological obstacles and new tools that would be needed to overcome them. Four major research areas for redesigning photosynthesis were identified: (i) mining natural variations of photosynthesis; (ii) coordinating photosynthesis with pathways utilizing photosynthate; (iii) reconstruction of highly efficient photosynthetic systems in non-host species; and (iv) development of new photosynthetic systems that do not exist in nature. To expedite photosynthesis synthetic biology research, an array of new technologies and community resources need to be developed, which include expanded modelling capacities, molecular engineering toolboxes, model species, and phenotyping tools.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

General program of Chinese National Science Foundation

Bill and Melinda Gates Foundation

Australian Research Council Centre of Excellence for Translational Photosynthesis

European Union Europe Aid SEW-REAP

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3