Granulosa cell metabolism at ovulation correlates with oocyte competence and is disrupted by obesity and aging

Author:

Morimoto Atsushi12,Rose Ryan D13,Smith Kirsten M1,Dinh Doan T1,Umehara Takashi14ORCID,Winstanley Yasmyn E1ORCID,Shibahara Hiroaki2,Russell Darryl L1,Robker Rebecca L1ORCID

Affiliation:

1. Robinson Research Institute, School of Biomedicine, University of Adelaide , Adelaide, SA, Australia

2. Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University , Hyogo, Japan

3. Genea Fertility SA , Adelaide, SA, Australia

4. Graduate School of Integrated Sciences for Life, Hiroshima University , Hiroshima, Japan

Abstract

Abstract STUDY QUESTION Is oocyte developmental competence associated with changes in granulosa cell (GC) metabolism? SUMMARY ANSWER GC metabolism is regulated by the LH surge, altered by obesity and reproductive aging, and, in women, specific metabolic profiles are associated with failed fertilization versus increased blastocyst development. WHAT IS KNOWN ALREADY The cellular environment in which an oocyte matures is critical to its future developmental competence. Metabolism is emerging as a potentially important factor; however, relative energy production profiles between GCs and cumulus cells and their use of differential substrates under normal in vivo ovulatory conditions are not well understood. STUDY DESIGN, SIZE, DURATION This study identified metabolic and substrate utilization profiles within ovarian cells in response to the LH surge, using mouse models and GCs of women undergoing gonadotropin-induced oocyte aspiration followed by IVF/ICSI. PARTICIPANTS/MATERIALS, SETTING, METHODS To comprehensively assess follicular energy metabolism, we used real-time metabolic analysis (Seahorse XFe96) to map energy metabolism dynamics (mitochondrial respiration, glycolysis, and fatty acid oxidation) in mouse GCs and cumulus–oocyte complexes (COCs) across a detailed time course in the lead up to ovulation. In parallel, the metabolic profile of GCs was measured in a cohort of 85 women undergoing IVF/ICSI (n = 21 with normal ovarian function; n = 64 with ovarian infertility) and correlated with clinical parameters and cycle outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Our study reveals dynamic changes in GC energy metabolism in response to ovulatory LH, with mitochondrial respiration and glycolysis differentially affected by obesity versus aging, in both mice and women. High respiration in GCs is associated with failed fertilization (P < 0.05) in a subset of women, while glycolytic reserve and mitochondrial ATP production are correlated with on-time development at Day 3 (P < 0.05) and blastocyst formation (P < 0.01) respectively. These data provide new insights into the cellular mechanisms of infertility, by uncovering significant associations between metabolism within the ovarian follicle and oocyte developmental competence. LIMITATIONS, REASONS FOR CAUTION A larger prospective study is needed before the metabolic markers that were positively and negatively associated with oocyte quality can be used clinically to predict embryo outcomes. WIDER IMPLICATIONS OF THE FINDINGS This study offers new insights into the importance of GC metabolism for subsequent embryonic development and highlights the potential for therapeutic strategies focused on optimizing mitochondrial metabolism to support embryonic development. STUDY FUNDING/COMPETING INTEREST(S) National Health and Medical Research Council (Australia). The authors have no competing interests. TRIAL REGISTRATION NUMBER N/A.

Funder

National Health and Medical Research Council of Australia

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3