Markov-Modulated Continuous-Time Markov Chains to Identify Site- and Branch-Specific Evolutionary Variation in BEAST

Author:

Baele Guy1,Gill Mandev S1,Bastide Paul1,Lemey Philippe1,Suchard Marc A234

Affiliation:

1. Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium

2. Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA

3. Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA

4. Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, CA 90095, USA

Abstract

Abstract Markov models of character substitution on phylogenies form the foundation of phylogenetic inference frameworks. Early models made the simplifying assumption that the substitution process is homogeneous over time and across sites in the molecular sequence alignment. While standard practice adopts extensions that accommodate heterogeneity of substitution rates across sites, heterogeneity in the process over time in a site-specific manner remains frequently overlooked. This is problematic, as evolutionary processes that act at the molecular level are highly variable, subjecting different sites to different selective constraints over time, impacting their substitution behavior. We propose incorporating time variability through Markov-modulated models (MMMs), which extend covarion-like models and allow the substitution process (including relative character exchange rates as well as the overall substitution rate) at individual sites to vary across lineages. We implement a general MMM framework in BEAST, a popular Bayesian phylogenetic inference software package, allowing researchers to compose a wide range of MMMs through flexible XML specification. Using examples from bacterial, viral, and plastid genome evolution, we show that MMMs impact phylogenetic tree estimation and can substantially improve model fit compared to standard substitution models. Through simulations, we show that marginal likelihood estimation accurately identifies the generative model and does not systematically prefer the more parameter-rich MMMs. To mitigate the increased computational demands associated with MMMs, our implementation exploits recent developments in BEAGLE, a high-performance computational library for phylogenetic inference. [Bayesian inference; BEAGLE; BEAST; covarion, heterotachy; Markov-modulated models; phylogenetics.]

Funder

Interne Fondsen KU Leuven/Internal Funds KU Leuven

Research Foundation – Flanders [“Fonds voor Wetenschappelijk Onderzoek – Vlaanderen”, G0E1420N to G.B.]

European Union’s Horizon 2020

Research Foundation – Flanders

National Science Foundation

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3