Biological reality and parsimony in crop models—why we need both in crop improvement!

Author:

Hammer Graeme1ORCID,Messina Charlie2ORCID,Wu Alex1,Cooper Mark1

Affiliation:

1. Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, St Lucia, Queensland, Australia

2. Corteva Agriscience, Johnston, IA, USA

Abstract

AbstractThe potential to add significant value to the rapid advances in plant breeding technologies associated with statistical whole-genome prediction methods is a new frontier for crop physiology and modelling. Yield advance by genetic improvement continues to require prediction of phenotype based on genotype, and this remains challenging for complex traits despite recent advances in genotyping and phenotyping. Crop models that capture physiological knowledge and can robustly predict phenotypic consequences of genotype-by-environment-by-management (G×E×M) interactions have demonstrated potential as an integrating tool. But does this biological reality come with a degree of complexity that restricts applicability in crop improvement? Simple, high-speed, parsimonious models are required for dealing with the thousands of genotypes and environment combinations in modern breeding programs utilizing genomic prediction technologies. In contrast, it is often considered that greater model complexity is needed to evaluate potential of putative variation in specific traits in target environments as knowledge on their underpinning biology advances. Is this a contradiction leading to divergent futures? Here it is argued that biological reality and parsimony do not need to be independent and perhaps should not be. Models structured to readily allow variation in the biological level of process algorithms, while using coding and computational advances to facilitate high-speed simulation, could well provide the structure needed for the next generation of crop models needed to support and enhance advances in crop improvement technologies. Beyond that, the trans-scale and transdisciplinary dialogue among scientists that will be required to construct such models effectively is considered to be at least as important as the models.

Funder

Australian Research Council

Corteva Agriscience

Grains Research and Development Corporation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Agronomy and Crop Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modelling and Simulation

Reference144 articles.

1. A physiological framework to explain genetic and environmental regulation of tillering in sorghum;Alam;The New Phytologist,2014

2. QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering;Alam;Theoretical and Applied Genetics,2014

3. Improving drought tolerance in maize;Barker;Plant Breeding Reviews,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3