Artesunate ameliorates osteoarthritis cartilage damage by updating MTA1 expression and promoting the transcriptional activation of LXA4 to suppress the JAK2/STAT3 signaling pathway

Author:

Zhao Chengjin12,Zhao Li2,Zhou Yuhu2,Feng Yangyang2,Li Nannan2,Wang Kunzheng1ORCID

Affiliation:

1. Department of Bone and Joint Surgery, Xi’an Jiaotong University Second Affiliated Hospital , Xi’an 710004, Shaanxi, China

2. Yan’an University Affiliated Hospital , Yan’an 716000, Shaanxi, China

Abstract

Abstract The objective of this study was to discuss the mechanism of artesunate (ART) in improving cartilage damage in osteoarthritis (OA) by regulating the expression levels of metastatic tumor antigen 1 (MTA1), lipoxin A4 (LXA4) and the downstream JAK2/STAT3 signaling pathway. The OA model in vitro was constructed by stimulating chondrocytes for 24 h with 10 ng/mL interleukin (IL)-1β, and cell proliferation and apoptosis, expression levels of Aggrecan, MTA1, LXA4, MMP3, MMP13 and Collagen II, and inflammatory cytokines in the culture supernatants were examined. Histopathological changes, inflammatory response and chondrocyte apoptosis of the cartilage tissues of OA mice were performed. In vitro cell experiments, ART enhanced cell proliferation capacity, accompanied by decreased apoptosis rate, decreased expression of MMP-3 and MMP-13, elevated expression of Collagen II and Aggrecan, as well as reduced levels of IL-6 and TNF-α in the cell supernatant. ART also ameliorated IL-1β-induced chondrocyte damage by upregulating MTA1. The LXA4 promoter region had two potential binding sites for MTA1. There was a positive correlation between MTA1 and LXA4. MTA1 enhanced the expression of LXA4 through transcription and blocked the activation of the JAK2/STAT3 signaling pathway. In vivo animal model experiments further showed that ART treatment alleviated cartilage tissue damage in OA model mice by upregulating MTA1. Our study demonstrates that ART improves the cartilage damage of OA by upregulating MTA1 expression and promoting the transcriptional activation of LXA4, and further blocking the JAK2/STAT3 signaling pathway.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Reference43 articles.

1. Therapeutics in osteoarthritis based on an understanding of its molecular pathogenesis;Kim;Int. J. Mol. Sci.,2018

2. Prenatal nicotine exposure increases osteoarthritis susceptibility in male elderly offspring rats via low-function programming of the TGFbeta signaling pathway;Chen;Toxicol. Lett.,2019

3. Inflammation-modulating hydrogels for osteoarthritis cartilage tissue engineering;Koh;Cell,2020

4. Surgical treatment for early osteoarthritis. Part II: allografts and concurrent procedures;Gomoll;Knee Surg. Sports Traumatol. Arthrosc.,2012

5. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial;Reginster;Ann. Rheum. Dis.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3