PRCD is Concentrated at the Base of Photoreceptor Outer Segments and is Involved in Outer Segment Disc Formation

Author:

Allon Gilad1,Mann Irit1,Remez Lital1,Sehn Elisabeth2,Rizel Leah1,Nevet Mariela J13,Perlman Ido1,Wolfrum Uwe2,Ben-Yosef Tamar1

Affiliation:

1. Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel

2. Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, Mainz, Germany

3. Department of Dermatology, Rambam Health Care Campus, Haifa, Israel

Abstract

Abstract Mutations of the PRCD gene are associated with rod-cone degeneration in both dogs and humans. Prcd is expressed in the mouse eye as early as embryonic day 14. In the adult mouse retina PRCD is expressed in the outer segments of both rod and cone photoreceptors. Immunoelectron microscopy revealed that PRCD is located at the outer segment rim, and that it is highly concentrated at the base of the outer segment. Prcd-knockout mice present with progressive retinal degeneration, starting at 20 weeks of age and onwards. This process is reflected by a significant and progressive reduction of both scotopic and photopic electroretinographic responses, and by thinning of the retina, and specifically of the outer nuclear layer, indicating photoreceptor loss. Electron microscopy revealed severe damage to photoreceptor outer segments, which is associated with immigration of microglia cells to the Prcd-knockout retina, and accumulation of vesicles in the inter-photoreceptor space. Phagocytosis of photoreceptor outer segment discs by the retinal pigmented epithelium is severely reduced. Our data show that Prcd-knockout mice serve as a good model for retinal degeneration caused by PRCD mutations in humans. Our findings in these mice support the involvement of PRCD in outer segment disc formation of both rod and cone photoreceptors. Furthermore, they suggest a feedback mechanism which coordinates the rate of photoreceptor outer segment disc formation, shedding and phagocytosis. This study has important implications for understanding the function of PRCD in the retina, as well as for future development of treatment modalities for PRCD-deficiency in humans.

Funder

Israel Science Foundation

Foundation Fighting Blindness

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3