Methanotrophic potential of Dutch canal wall biofilms is driven by Methylomonadaceae

Author:

Pelsma Koen A J1ORCID,Verhagen Daniël A M1,Dean Joshua F2ORCID,Jetten Mike S M1ORCID,Welte Cornelia U1ORCID

Affiliation:

1. Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen , The Netherlands

2. School of Geographical Sciences, University of Bristol , Bristol BS8 1SS , United Kingdom

Abstract

Abstract Global urbanization of waterways over the past millennium has influenced microbial communities in these aquatic ecosystems. Increased nutrient inputs have turned most urban waters into net sources of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Here, canal walls of five Dutch cities were studied for their biofilm CH4 oxidation potential, alongside field observations of water chemistry, and CO2 and CH4 emissions. Three cities showed canal wall biofilms with relatively high biological CH4 oxidation potential up to 0.48 mmol gDW−1 d−1, whereas the other two cities showed no oxidation potential. Salinity was identified as the main driver of biofilm bacterial community composition. Crenothrix and Methyloglobulus methanotrophs were observed in CH4-oxidizing biofilms. We show that microbial oxidation in canal biofilms is widespread and is likely driven by the same taxa found across cities with distinctly different canal water chemistry. The oxidation potential of the biofilms was not correlated with the amount of CH4 emitted but was related to the presence or absence of methanotrophs in the biofilms. This was controlled by whether there was enough CH4 present to sustain a methanotrophic community. These results demonstrate that canal wall biofilms can directly contribute to the mitigation of greenhouse gases from urban canals.

Funder

NESSC

ERC

UKRI Future Leaders

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3