Cadmium Inhibits Lateral Root Emergence in Rice by Disrupting OsPIN-Mediated Auxin Distribution and the Protective Effect of OsHMA3

Author:

Wang Han-Qing1,Xuan Wei1,Huang Xin-Yuan1,Mao Chuanzao2,Zhao Fang-Jie1ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

2. State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China

Abstract

Abstract Cadmium (Cd) strongly inhibits root growth, especially the formation of lateral roots (LRs). The mechanism of Cd inhibition on LR formation in rice (Oryza sativa) remains unclear. In this study, we found that LR emergence in rice was inhibited significantly by 1 �M Cd and almost completely arrested by 5 �M Cd. Cd suppressed both the formation and subsequent development of the lateral root primordium (LRP). By using transgenic rice expressing the auxin response reporters DR5::GUS and DR5rev::VENUS, we found that Cd markedly reduced the auxin levels in the stele and LRP. Cd rapidly downregulated the expression of the auxin efflux transporter genes OsPIN1b, OsPIN1c and OsPIN9 in the stele and LRP. The emergence of LRs in a rice cultivar with a null allele of OsHMA3 (Heavy Metal ATPase 3) was more sensitive to Cd than cultivars with functional alleles. Overexpression of functional OsHMA3 in rice greatly alleviated the inhibitory effect of Cd, but the protective effect of OsHMA3 was abolished by the auxin polar transport inhibitor 1-N-naphthylphthalamic acid. The results suggest that Cd inhibits LR development in rice by disrupting OsPIN-mediated auxin distribution to LRP and OsHMA3 protects against Cd toxicity by sequestering Cd into the vacuoles.

Funder

The Natural Science Foundation of China

Innovative Research Team Development Plan of the Ministry of Education of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3