A simple, robust, broadly applicable insertion mutagenesis method to create random fluorescent protein: target protein fusions

Author:

Pike Andrew1ORCID,Pietryski Cassandra2,Deighan Padraig2ORCID,Kuehner Jason2ORCID,Lau Derek2,Seshan Anupama2,March Paul E2ORCID

Affiliation:

1. Department of Biology, Oberlin College and Conservatory , 173 W. Lorain St, Oberlin, OH 44074 , USA

2. Department of Biology, Emmanuel College , 400 The Fenway, Boston, MA 02115 , USA

Abstract

Abstract A simple, broadly applicable method was developed using an in vitro transposition reaction followed by transformation into Escherichia coli and screening plates for fluorescent colonies. The transposition reaction catalyzes the random insertion of a fluorescent protein open reading frame into a target gene on a plasmid. The transposition reaction is employed directly in an E. coli transformation with no further procedures. Plating at high colony density yields fluorescent colonies. Plasmids purified from fluorescent colonies contain random, in-frame fusion proteins into the target gene. The plate screen also results in expressed, stable proteins. A large library of chimeric proteins was produced, which was useful for downstream research. The effect of using different fluorescent proteins was investigated as well as the dependence of the linker sequence between the target and fluorescent protein open reading frames. The utility and simplicity of the method were demonstrated by the fact that it has been employed in an undergraduate biology laboratory class without failure over dozens of class sections. This suggests that the method will be useful in high-impact research at small liberal arts colleges with limited resources. However, in-frame fusion proteins were obtained from 8 different targets suggesting that the method is broadly applicable in any research setting.

Funder

Emmanuel College

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3