Transgenic Drosophila lines for LexA-dependent gene and growth regulation

Author:

Chang Kathleen R12,Tsao Deborah D2,Bennett Celine2,Wang Elaine3,Floyd Jax F3,Tay Ashley S Y3,Greenwald Emily4ORCID,Kim Ella S5,Griffin Catherine5,Morse Elizabeth5,Chisholm Townley5,Rankin Anne E5,Baena-Lopez Luis Alberto6ORCID,Lantz Nicole3,Fox Elizabeth3,Kockel Lutz2ORCID,Kim Seung K278,Park Sangbin2ORCID

Affiliation:

1. Stanford University, Stanford, CA 94305, USA

2. Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA

3. The Lawrenceville School, Lawrenceville, NJ 08648, USA

4. Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA

5. Phillips Exeter Academy, Exeter, NH 03833, USA

6. Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK

7. Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA

8. Stanford Diabetes Research Center, Stanford, CA 94305, USA

Abstract

Abstract Conditional expression of short hairpin RNAs with binary genetic systems is an indispensable tool for studying gene function. Addressing mechanisms underlying cell–cell communication in vivo benefits from simultaneous use of 2 independent gene expression systems. To complement the abundance of existing Gal4/UAS-based resources in Drosophila, we and others have developed LexA/LexAop-based genetic tools. Here, we describe experimental and pedagogical advances that promote the efficient conversion of Drosophila Gal4 lines to LexA lines, and the generation of LexAop-short hairpin RNA lines to suppress gene function. We developed a CRISPR/Cas9-based knock-in system to replace Gal4 coding sequences with LexA, and a LexAop-based short hairpin RNA expression vector to achieve short hairpin RNA-mediated gene silencing. We demonstrate the use of these approaches to achieve targeted genetic loss-of-function in multiple tissues. We also detail our development of secondary school curricula that enable students to create transgenic flies, thereby magnifying the production of well-characterized LexA/LexAop lines for the scientific community. The genetic tools and teaching methods presented here provide LexA/LexAop resources that complement existing resources to study intercellular communication coordinating metazoan physiology and development.

Funder

John and Eileen Hessel Fund for Innovation in Science Education

Stanford Vice-Provost for Undergraduate Education (VPUE) and Stanford Bio-X scholarships

National Science Foundation

Institutional Training Grant in Genome Science

NIH

H.L. Snyder Foundation, the Elser Trust, a Stanford VPUE faculty award

Stanford Diabetes Research Center

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3