Transmembrane protein 120A (TMEM-120A/TACAN) coordinates with PIEZO channel during Caenorhabditis elegans reproductive regulation

Author:

Bai Xiaofei123ORCID,Golden Andy3ORCID

Affiliation:

1. Department of Biology, University of Florida , Gainesville, FL 32610 , USA

2. Genetics Institute, University of Florida , Gainesville, FL 32610 , USA

3. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD 20892 , USA

Abstract

Abstract Membrane protein TMEM120A (also known as TACAN) was presumed to be both a mechanically activated molecule and a lipid-modifying enzyme. TMEM120A has been identified as a negative regulator of the essential excitatory mechanosensitive protein PIEZO2. However, the extent to which TMEM120A mediates PIEZO2's activity during physiological processes remains largely unknown. In this study, we used the Caenorhabditis elegans reproductive tract to explore the functional contribution of tmem-120, the sole TMEM120A/B ortholog, and its genetic interaction with pezo-1 in vivo. tmem-120 was expressed throughout the C. elegans development, particularly in the germline, embryos, and spermatheca. A tmem-120 mutant with a full-length deletion (tmem-120Δ) displayed deformed germline, maternal sterility, and a reduced brood size. In vivo live imaging revealed that pinched zygotes were frequently observed in the uterus of tmem-120Δ mutant animals, suggesting damage during spermathecal contraction. We then employed the auxin-inducible degradation system to degrade TMEM-120 protein in all somatic tissues or the germline, both of which resulted in reduced brood sizes. These findings suggested that multiple inputs of tmem-120 from different tissues regulate reproduction. Lastly, the loss of tmem-120 alleviated the brood size reduction and defective sperm navigation behavior in the pezo-1Δ mutant. Overall, our findings reveal a role for tmem-120 in regulating reproductive physiology in C. elegans, and suggest an epistatic interaction between pezo-1 and tmem-120 when governing proper reproduction.

Funder

National Institutes of Health

National Institute of Diabetes and Digestive and Kidney Diseases

NIH Pathway to Independence Award

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3