Strain-specific evolution and host-specific regulation of transposable elements in the model plant symbiont Rhizophagus irregularis

Author:

Oliveira Jordana Inácio Nascimento1ORCID,Corradi Nicolas1ORCID

Affiliation:

1. Department of Biology, Faculty of Sciences, University of Ottawa , Ottawa, ON , Canada K1N 6N5

Abstract

Abstract Transposable elements (TEs) are repetitive DNA that can create genome structure and regulation variability. The genome of Rhizophagus irregularis, a widely studied arbuscular mycorrhizal fungus (AMF), comprises ∼50% repetitive sequences that include TEs. Despite their abundance, two-thirds of TEs remain unclassified, and their regulation among AMF life stages remains unknown. Here, we aimed to improve our understanding of TE diversity and regulation in this model species by curating repeat datasets obtained from chromosome-level assemblies and by investigating their expression across multiple conditions. Our analyses uncovered new TE superfamilies and families in this model symbiont and revealed significant differences in how these sequences evolve both within and between R. irregularis strains. With this curated TE annotation, we also found that the number of upregulated TE families in colonized roots is 4 times higher than in the extraradical mycelium, and their overall expression differs depending on the plant host. This work provides a fine-scale view of TE diversity and evolution in model plant symbionts and highlights their transcriptional dynamism and specificity during host–microbe interactions. We also provide Hidden Markov Model profiles of TE domains for future manual curation of uncharacterized sequences (https://github.com/jordana-olive/TE-manual-curation/tree/main).

Funder

Natural Sciences and Engineering Research Council of Canada

Discovery Accelerator Supplements Program

Mitacs Accelerate Program

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3